تعداد نشریات | 20 |
تعداد شمارهها | 1,149 |
تعداد مقالات | 10,518 |
تعداد مشاهده مقاله | 45,415,494 |
تعداد دریافت فایل اصل مقاله | 11,291,289 |
The Relationship of XPA and XPC Gene Polymorphisms with the Risk of Colorectal Cancer in Iran | ||
Middle East Journal of Cancer | ||
مقاله 8، دوره 11، شماره 4 - شماره پیاپی 44، دی 2020، صفحه 445-453 اصل مقاله (199.6 K) | ||
نوع مقاله: Original Article(s) | ||
شناسه دیجیتال (DOI): 10.30476/mejc.2020.81864.1045 | ||
نویسندگان | ||
Jamshid Mehrzad* 1؛ Mahdieh Dayyani2؛ Mohamadreza Erfanian-Khorasani1 | ||
1Department of Biochemistry, Neyshabur Medical Sciences Branch, Islamic Azad University, Neyshabur, Iran | ||
2Radiation Oncology Department, Reza Radiotherapy Oncology Center, Mashhad, Iran | ||
چکیده | ||
Background: The objective of this study was to investigate the effect of several XPA and XPC polymorphisms on the risk of colorectal cancer (CRC) in northeastern Iran. Method: 180 CRC patients and 160 healthy subjects participated in this case-control study. We determined the genotypes by RFLP-PCR and PIRA-PCR, and analyzed the results using logistic regression and χ2-test. Results: Our findings showed that only BMI could affect the risk of cancer among the studied demographic factors. Three of the four polymorphisms studied, namely XPA A23G, XPC rs2228000 C > T and XPC rs2228001 A > C, did not correlate with CRC (P-values > 0.05); however, the polymorphism of XPC poly AT (PAT) increased the risk of CRC (P= 0.024). The XPC rs2228000 C> T polymorphism increased the CRC risk only in patients aged 50 or more. The risk of CRC in heterozygote individuals (XPC PAT D/I) was higher than that of homozygous individuals (XPC PAT D/D); also, at least one PAT I variant allele increased the likelihood of CRC (for PAT D/I OR =2.168; 95% CI = 1.809-4.319: and for PAT D/I and PAT I/I OR = 1.810; 95% CI = 1.165-2.813). The XPC haplotypes were similar between the cases and controls, and P-values were >0.05. Conclusion: In the whole population, XPC PAT polymorphism, overweightness, and XPC rs2228000 C>T polymorphism in elderly people are related to CRC. Therefore, they can probably be considered as markers of CRC in Iran. | ||
کلیدواژهها | ||
XPA؛ XPC؛ Polymorphism؛ Colorectal cancer | ||
اصل مقاله | ||
How to cite this article: Mehrzad J, Dayyani M, Erfanian-Khorasani M. The relationship of XPA and XPC gene polymorphisms with the risk of colorectal cancer in Iran. Middle East J Cancer. 2020;11(4): 445-53. doi: 10. 30476/mejc.2020.81864.1045. | ||
مراجع | ||
1. Haggar FA, Robin P, Boushey M. Colorectal Cancer Epidemiology: Incidence, Mortality, Survival, and Risk Factors. Clin Colon AND Rectal Surg. 2009; 22(4): 191-197. 2. Basu AK. DNA Damage, Mutagenesis and Cancer. Int J Mol Sci. 2018; 19(4), 970. 3. Sugitani N, Shell SM, Soss SE, Chazin WJ. Redefining the DNA-binding domain of human XPA. J Am Chem Soc, 2014; 136(31): 10830-3. 4. Ziani S, Nagy Z, Alekseev S, Soutoglou E, Egly JM, Coin F. Sequential and ordered assembly of a large DNA repair complex on undamaged chromatin. J Cell Biol, 2014; 206: 589–598. 5. Park CH, Mu D, Reardon JT, Sancar A. The general transcription-repair factor TFIIH is recruited to the excision repair complex by the XPA protein independent of the TFIIE transcription factor. J Biol Chem, 1995; 270: 4896–4902. 6. Camenisch U, Nageli H. XPA gene, its product and biological roles. Adv Exp Med Biol. 2008; 637: 28–38. 7. Feng X, Liu J, Gong Y, Gou K, Yang H, Yuan Y, Xing C. DNA repair protein XPA is differentially expressed in colorectal cancer and predicts better prognosis.Cancer Med. 2018; 7(6):2339–2349. 8. Tao J, Zhuo ZJ, Su M, Yan L, He L, Zhang J. XPA gene polymorphisms and risk of neuroblastoma in Chinese children: a two-center case-control study. J Cancer, 2018;9(15): 2751-2756. 9. Hansen RD, Sørensen M, Tjønneland A, Overvad K, Wallin H, Raaschou-Nielsen, Vogel U. XPA A23G, XPC Lys939Gln, XPD Lys751Gln and XPD Asp312Asn polymorphisms, interactions with smoking, alcohol and dietary factors, and risk of colorectal cancer. Mutat Res, 2007; 619: 68–80. 10. Scharer OD. Nucleotide excision repair in eukaryotes, Cold Spring Harb Perspect Biol, 2013; 5(10): a012609. 11. Sugitani N, Sivley RM, Perry KE, Capra JA, Chazin WJ. XPA: A key scaffold for human nucleotide excision repair. DNA Repair, 2016; 44: 123–135. 12. Bunick C, Miller M, Fuller B. Biochemical and structural domain analysis of xeroderma pigmentosum complementation group C protein. Biochemistry. 2006; 45(50): 14965–14979. 13. Friedberg EC, Bond JP, Burns DK, Cheo DL, Greenblatt MS, Meira LB, Nahari D, Reis AM. Defective nucleotide excision repair in xpc mutant mice and its association with cancer predisposition. Mutat Res, 2000; 459: 99-108. 14. Sands AT, Abuin A, Sanchez A, Conti CJ, Bradley A. High susceptibility to ultraviolet-induced carcinogenesis in mice lacking XPC. Nature, 1995; 377: 162-165. 15. Marı´n MS, Lo´pez-Cima MF, Garcı´a-Castro L, Pascua T, Marro´n M, Tardo´n A. Poly (AT) Polymorphism in Intron 11 of the XPC DNA Repair Gene Enhances the Risk of Lung Cancer. Cancer Epidemiol Biomarkers Prev, 2004; 13: 1788-1795. 16. Liu Y, Wang H, Lin T, Wei Q, Zhi Y, Yuan Y, et al. Interactions between cigarette smoking and XPC-PAT genetic polymorphism enhance bladder cancer risk. Oncol Rep, 2012; 28: 337-345. 17. Hua RX, Zhu J, Jiang DH, Zhang SD, Zhang JB, Xue WQ, et al. Association of XPC Gene Polymorphisms with Colorectal Cancer Risk in a Southern Chinese Population: A Case-Control Study and Meta-Analysis. Genes, 2016; 73. 18. Sun HY, Zuo L, Zou JG, Zhang LF, Wu XP, Mi YY, et al. Current evidence on XPC rs2228001 A/C polymorphism and bladder cancer susceptibility. Int J Clin Exp Med, 2016; 9:2881-2888. 19. Paszkowska-Szczur K, Scott RJ, G´orski B. Polymorphisms in nucleotide excision repair genes and susceptibility to colorectal cancer in the Polish population. Mol Biol Rep, 2015; 42: 755–764. 20. Ahmad-Aizat AA, Siti-Nurfatimah MS, Aminudin MM, Ankathil R. XPC Lys939Gln polymorphism, smoking and risk of sporadic colorectal cancer among Malaysians. World J Gastroenterol. 2013; 19(23): 3623–3628. 21-Xiayi Ke, Collins A, Ye S. PIRA PCR designer for restriction analysis of single nucleotide polymorphisms. BIOINFORMATICS APPLICATIONS NOTE, 2001; 17(9):838–839. 22. Wu X, Zhao H, Wei Q, I Amos C, Zhang K, Guo Z, et al. XPA polymorphism associated with reduced lung cancer risk and a modulating effect on nucleotide excision repair capacity. Carcinogenesis, 2003; 24: 505–509. 23. Rodriguez S, Gaunt TR, Day IN. Hardy-Weinberg Equilibrium Testing of Biological Ascertainment for Medline Randomization Studies. Am J Epidemiol, 2009; 169:505-514. 25. Hrdlickova B, Coutinho de Almeida R, Borek Z, Withoff S. Genetic variation in the non-coding genome: Involvement of micro-RNAs and long non-coding RNAs in disease. Biochimica et Biophysica Acta, 2014; 1842: 1910–1922. 26. Mehrzad J, Monajjemi M, Hashemi M. In silico Study of Effects of Polymorphisms on Biophysical Chemical Properties of Oxidized N-Terminal Domain of X-Ray Cross-Complementing Group 1 Protein. Biochem (Mosc), 2014; 79(1): 31-36. 27. Zhu JF, Chen YJ, Zhou JN. The single nucleotide polymorphism in the promoter of DNA repair gene XPA and in association with the risk of lung cancer. Zhong Liu, 2005; 25: 246–249. 28. Liu X, Lin Q, Fu C, Liu C, Zhu F, Liu Z, et al. Association between XPA gene rs1800975 polymorphism and susceptibility to lung cancer: a meta-analysis. Clin Respir J, 2018; 12:448–458. 29. He L, Deng, Luo H. XPA A23G polymorphism and risk of digestive system cancers: a meta-analysis. Onco Targets Ther, 2015; 8: 385–394. 30. Zhu J, Fu W, Jia W, Xia H, Liu GC, He J. Association between NER Pathway Gene Polymorphisms and Wilms Tumor Risk. Mol Ther Nucleic Acids, 2018; 12: 854-860. 31. Wu Y, Jin M, Liu B, Liang X, Yu Y, Li Q, et al. The association of XPC polymorphisms and tea drinking with colorectal cancer risk in a Chinese population. Mol Carcinog, 2011; 50:189–198. 32. Deng N, Zhou H, Fan H, Yuan Y. Single nucleotide polymorphisms and cancer susceptibility. Oncotarget. 2017; 8:110635-49. 1. Haggar FA, Robin P, Boushey M. Colorectal Cancer Epidemiology: Incidence, Mortality, Survival, and Risk Factors. Clin Colon AND Rectal Surg. 2009; 22(4): 191-197. 2. Basu AK. DNA Damage, Mutagenesis and Cancer. Int J Mol Sci. 2018; 19(4), 970. 3. Sugitani N, Shell SM, Soss SE, Chazin WJ. Redefining the DNA-binding domain of human XPA. J Am Chem Soc, 2014; 136(31): 10830-3. 4. Ziani S, Nagy Z, Alekseev S, Soutoglou E, Egly JM, Coin F. Sequential and ordered assembly of a large DNA repair complex on undamaged chromatin. J Cell Biol, 2014; 206: 589–598. 5. Park CH, Mu D, Reardon JT, Sancar A. The general transcription-repair factor TFIIH is recruited to the excision repair complex by the XPA protein independent of the TFIIE transcription factor. J Biol Chem, 1995; 270: 4896–4902. 6. Camenisch U, Nageli H. XPA gene, its product and biological roles. Adv Exp Med Biol. 2008; 637: 28–38. 7. Feng X, Liu J, Gong Y, Gou K, Yang H, Yuan Y, Xing C. DNA repair protein XPA is differentially expressed in colorectal cancer and predicts better prognosis.Cancer Med. 2018; 7(6):2339–2349. 8. Tao J, Zhuo ZJ, Su M, Yan L, He L, Zhang J. XPA gene polymorphisms and risk of neuroblastoma in Chinese children: a two-center case-control study. J Cancer, 2018;9(15): 2751-2756. 9. Hansen RD, Sørensen M, Tjønneland A, Overvad K, Wallin H, Raaschou-Nielsen, Vogel U. XPA A23G, XPC Lys939Gln, XPD Lys751Gln and XPD Asp312Asn polymorphisms, interactions with smoking, alcohol and dietary factors, and risk of colorectal cancer. Mutat Res, 2007; 619: 68–80. 10. Scharer OD. Nucleotide excision repair in eukaryotes, Cold Spring Harb Perspect Biol, 2013; 5(10): a012609. 11. Sugitani N, Sivley RM, Perry KE, Capra JA, Chazin WJ. XPA: A key scaffold for human nucleotide excision repair. DNA Repair, 2016; 44: 123–135. 12. Bunick C, Miller M, Fuller B. Biochemical and structural domain analysis of xeroderma pigmentosum complementation group C protein. Biochemistry. 2006; 45(50): 14965–14979. 13. Friedberg EC, Bond JP, Burns DK, Cheo DL, Greenblatt MS, Meira LB, Nahari D, Reis AM. Defective nucleotide excision repair in xpc mutant mice and its association with cancer predisposition. Mutat Res, 2000; 459: 99-108. 14. Sands AT, Abuin A, Sanchez A, Conti CJ, Bradley A. High susceptibility to ultraviolet-induced carcinogenesis in mice lacking XPC. Nature, 1995; 377: 162-165. 15. Marı´n MS, Lo´pez-Cima MF, Garcı´a-Castro L, Pascua T, Marro´n M, Tardo´n A. Poly (AT) Polymorphism in Intron 11 of the XPC DNA Repair Gene Enhances the Risk of Lung Cancer. Cancer Epidemiol Biomarkers Prev, 2004; 13: 1788-1795. 16. Liu Y, Wang H, Lin T, Wei Q, Zhi Y, Yuan Y, et al. Interactions between cigarette smoking and XPC-PAT genetic polymorphism enhance bladder cancer risk. Oncol Rep, 2012; 28: 337-345. 17. Hua RX, Zhu J, Jiang DH, Zhang SD, Zhang JB, Xue WQ, et al. Association of XPC Gene Polymorphisms with Colorectal Cancer Risk in a Southern Chinese Population: A Case-Control Study and Meta-Analysis. Genes, 2016; 73. 18. Sun HY, Zuo L, Zou JG, Zhang LF, Wu XP, Mi YY, et al. Current evidence on XPC rs2228001 A/C polymorphism and bladder cancer susceptibility. Int J Clin Exp Med, 2016; 9:2881-2888. 19. Paszkowska-Szczur K, Scott RJ, G´orski B. Polymorphisms in nucleotide excision repair genes and susceptibility to colorectal cancer in the Polish population. Mol Biol Rep, 2015; 42: 755–764. 20. Ahmad-Aizat AA, Siti-Nurfatimah MS, Aminudin MM, Ankathil R. XPC Lys939Gln polymorphism, smoking and risk of sporadic colorectal cancer among Malaysians. World J Gastroenterol. 2013; 19(23): 3623–3628. 21-Xiayi Ke, Collins A, Ye S. PIRA PCR designer for restriction analysis of single nucleotide polymorphisms. BIOINFORMATICS APPLICATIONS NOTE, 2001; 17(9):838–839. 22. Wu X, Zhao H, Wei Q, I Amos C, Zhang K, Guo Z, et al. XPA polymorphism associated with reduced lung cancer risk and a modulating effect on nucleotide excision repair capacity. Carcinogenesis, 2003; 24: 505–509. 23. Rodriguez S, Gaunt TR, Day IN. Hardy-Weinberg Equilibrium Testing of Biological Ascertainment for Medline Randomization Studies. Am J Epidemiol, 2009; 169:505-514. 25. Hrdlickova B, Coutinho de Almeida R, Borek Z, Withoff S. Genetic variation in the non-coding genome: Involvement of micro-RNAs and long non-coding RNAs in disease. Biochimica et Biophysica Acta, 2014; 1842: 1910–1922. 26. Mehrzad J, Monajjemi M, Hashemi M. In silico Study of Effects of Polymorphisms on Biophysical Chemical Properties of Oxidized N-Terminal Domain of X-Ray Cross-Complementing Group 1 Protein. Biochem (Mosc), 2014; 79(1): 31-36. 27. Zhu JF, Chen YJ, Zhou JN. The single nucleotide polymorphism in the promoter of DNA repair gene XPA and in association with the risk of lung cancer. Zhong Liu, 2005; 25: 246–249. 28. Liu X, Lin Q, Fu C, Liu C, Zhu F, Liu Z, et al. Association between XPA gene rs1800975 polymorphism and susceptibility to lung cancer: a meta-analysis. Clin Respir J, 2018; 12:448–458. 29. He L, Deng, Luo H. XPA A23G polymorphism and risk of digestive system cancers: a meta-analysis. Onco Targets Ther, 2015; 8: 385–394. 30. Zhu J, Fu W, Jia W, Xia H, Liu GC, He J. Association between NER Pathway Gene Polymorphisms and Wilms Tumor Risk. Mol Ther Nucleic Acids, 2018; 12: 854-860. 31. Wu Y, Jin M, Liu B, Liang X, Yu Y, Li Q, et al. The association of XPC polymorphisms and tea drinking with colorectal cancer risk in a Chinese population. Mol Carcinog, 2011; 50:189–198. 32. Deng N, Zhou H, Fan H, Yuan Y. Single nucleotide polymorphisms and cancer susceptibility. Oncotarget. 2017; 8:110635-49. | ||
آمار تعداد مشاهده مقاله: 6,463 تعداد دریافت فایل اصل مقاله: 5,966 |