- Mohammadalibeigi F, Shirani M, Seyed-Salehi H, Afzali L. Biochemical urinalysis of healthy kidney and stone-generating kidney in unilateral urolithiasis. Journal of Renal Injury Prevention. 2019;8(2):151-6. doi: 10.15171/jrip.2019.28.
- Zeng J, Wang S, Zhong L, Huang Z, Zeng Y, Zheng D, Zou W, Lai H. A Retrospective Study of Kidney Stone Recurrence in Adults. Journal of Clinical Medicine Research. 2019;11(3):208-12. doi: 10.14740/jocmr3753. PubMed PMID: 30834044. PubMed PMCID: PMC6396780.
- Eliahou R, Hidas G, Duvdevani M, Sosna J. Determination of renal stone composition with dual-energy computed tomography: an emerging application. Seminars in Ultrasound, CT and MRI. 2010;31(4):315-20. doi: 10.1053/j.sult.2010.05.002.
- Warty Y, Haryanto F, Fitri LA, Haekal M, Herman H. A Spatial Distribution Analysis on the Deposition Mechanism Complexity of the Organic Material of Kidney Stone. J Biomed Phys Eng. 2020;10(3):273-82. doi: 10.31661/jbpe.v0i0.1104.
- Ueberle F. Application of shock waves and pressure pulses in medicine. Berlin, Heidelberg: Springer Handbook of Medical Technology; 2011. p. 641-75.
- Beik J, Mehdizadeh AR, Shakeri-Zadeh A. Ultrasound in cancer treatment through nanotechnology. J Biomed Phys Eng. 2016;6(3):123-6. PubMed PMID: 27853719. PubMed PMCID: PMC5106544.
- Ghassemi M, Shahidian A. Nano and bio heat transfer and fluid flow. Elsevier Science; 2017.
- Aayani R, Shahidian A, Ghassemi M. Numerical Investigation of Non-Newtonian Blood Effect on Acoustic Streaming. Journal of Applied Fluid Mechanics. 2016;9(1):173-6.
- López-Haro SA, Gutiérrez MI, Vera A, Leija L. Modeling the thermo-acoustic effects of thermal-dependent speed of sound and acoustic absorption of biological tissues during focused ultrasound hyperthermia. Journal of Medical Ultrasonics. 2015;42(4):489-98. doi: 10.1007/s10396-015-0643-3.
- Bailey MR, Khokhlova VA, Sapozhnikov OA, Kargl SG, Crum LA. Physical mechanisms of the therapeutic effect of ultrasound (a review). Acoustical Physics. 2003;49(4):369-88. doi: 10.1134/1.1591291.
- Dai JC, Bailey MR, Sorensen MD, Harper JD. Innovations in Ultrasound Technology in the Management of Kidney Stones. Urologic Clinics. 2019;46(2):273-85. doi: 10.1016/j.ucl.2018.12.009.
- Wess OJ, Mayer J. Fragmentation of brittle material by shock wave lithotripsy. Momentum transfer and inertia: a novel view on fragmentation mechanisms. Urolithiasis. 2018:137-49. doi: 10.1007/s00240-018-1102-6.
- Lawler AC, Ghiraldi EM, Tong C, Friedlander JI. Extracorporeal shock wave therapy: current perspectives and future directions. Current Urology reports. 2017;18(4):25. doi: 10.1007/s11934-017-0672-0.
- Ghorbani M, Oral O, Ekici S, Gozuacik D, Koşar A. Review on lithotripsy and cavitation in urinary stone therapy. IEEE Reviews in Biomedical Engineering. 2016;9:264-83. doi: 10.1109/RBME.2016.2573381.
- Wang KG. Multiphase fluid-solid coupled analysis of shock-bubble-stone interaction in shockwave lithotripsy. International Journal for Numerical Methods in Biomedical Engineering. 2017;33(10):e2855. doi; 10.1002/cnm.2855.
- Zhu S, Cocks FH, Preminger GM, Zhong P. The role of stress waves and cavitation in stone comminution in shock wave lithotripsy. Ultrasound in Medicine & Biology. 2002;28(5):661-71. doi: 10.1016/S0301-5629(02)00506-9.
- Chaussy CH, Brendel W, Schmiedt E. Extracorporeally induced destruction of kidney stones by shock waves. The Lancet. 1980;316(8207):1265-8. doi: 10.1016/S0140-6736(80)92335-1.
- Xi X, Zhong P. Dynamic photoelastic study of the transient stress field in solids during shock wave lithotripsy. J Acoust Soc Am. 2001;109(3):1226-39. doi: 10.1121/1.1349183.
- Zhang Y, Nault I, Mitran S, Iversen ES, Zhong P. Effects of stone size on the comminution process and efficiency in shock wave lithotripsy. Ultrasound in Medicine & Biology. 2016;42(11):2662-75. doi: 10.1016/j.ultrasmedbio.2016.06.018.
- Dahake G, Gracewski SM. Finite difference predictions of P-SV wave propagation inside submerged solids. I. Liquid–solid interface conditions. J Acoust Soc Am. 1997;102(4):2125-37. doi: 10.1121/1.419592.
- Dahake G, Gracewski SM. Finite difference predictions of P-SV wave propagation inside submerged solids. II. Effect of geometry. J Acoust Soc Am. 1997;102(4):2138-45. doi: 10.1121/1.419593.
- Cleveland RO, Sapozhnikov OA. Modeling elastic wave propagation in kidney stones with application to shock wave lithotripsy. J Acoust Soc Am. 2005;118(4):2667-76. doi: 10.1121/1.2032187.
- Weinberg K, Ortiz M. Kidney damage in extracorporeal shock wave lithotripsy: a numerical approach for different shock profiles. Biomechanics and Modeling in Mechanobiology. 2009;8(4):285. doi: 10.1007/s10237-008-0135-0.
- Li W, Zhang J, Francis LS, editors. Handbook of LC-MS bioanalysis: best practices, experimental protocols, and regulations. John Wiley & Sons; 2013.
- Kyriakou A. Multi-physics computational modeling of focused ultrasound therapies. ETH Zurich; 2015.
- Suomi V, Jaros J, Treeby B, Cleveland RO. Full Modeling of High-Intensity Focused Ultrasound and Thermal Heating in the Kidney Using Realistic Patient Models. IEEE Trans Biomed Eng. 2018;65(11):2660-70. doi: 10.1109/TBME.2018.2870064. PMID: 30222549.
- Haddadi S, Ahmadian MT. Numerical and Experimental Evaluation of High-Intensity Focused Ultrasound–Induced Lesions in Liver Tissue Ex Vivo. Journal of Ultrasound in Medicine. 2018;37(6):1481-91. doi: 10.1002/jum.14491.
- Nyame YA, De S, Sarkissian C, Brown R, Kartha G, Babbar P, Monga M. Kidney stone models for in vitro lithotripsy research: a comprehensive review. Journal of Endourology. 2015;29(10):1106-9. doi: 10.1089/end.2014.0850. PMID: 25924100.
- Steinbach P, Wörle K, Seidl M, Seitz R, Hofstädter F. Effects of high-energy ultrasonic shock waves on tumor cells in vitro and human endothelial cells in situ shock wave lithotripsy, aspects and Forecasts. Tübingen: University Library; 1993. p. 104-9
- Miller DL, Thomas RM. Thresholds for hemorrhages in mouse skin and intestine induced by lithotripter shock waves. Ultrasound in Medicine & Biology. 1995;21(2):249-57. doi: 10.1016/S0301-5629(94)00112-X.
|