- Tachibana K, Feril LB, Ikeda-Dantsuji Y. Sonodynamic therapy. Ultrasonics. 2008;48(4):253-9. doi: 10.1016/j.ultras.2008.02.003.
- Kievit FM, Zhang M. Surface engineering of iron oxide nanoparticles for targeted cancer therapy. Acc Chem Res. 2011;44(10):853-62. doi: 10.1021/ar2000277.
- Shibu ES, Hamada M, Murase N, Biju V. Nanomaterials formulations for photothermal and photodynamic therapy of cancer. J Photoch Photobio C. 2013;15:53-72. doi: 10.1016/j.jphotochemrev.2012.09.004.
- Gorgizadeh M, Azarpira N, Dehdari Veis R, Sattarahmady N. Repression of melanoma tumor in vitro and in vivo by photothermal effect of carbon xerogel nanoparticles. Colloid Surface B. 2019;176: 449-55. doi: 10.1016/j.colsurfb.2019.01.032. PubMed PMID: 30682617.
- Sattarahmady N, Rezaie-Yazdi M, Tondro GH, Akbari N. Bactericidal laser ablation of carbon dots: An in vitro study on wild-type and antibiotic-resistant Staphylococcus aureus. J Photoch Photobio B. 2017;166: 323-32. doi: 10.1016/j.jphotobiol.2016.12.006. PubMed PMID: 28024283.
- Cheng L, Wang C, Feng L, Yang K, Liu Z. Functional nanomaterials for phototherapies of cancer. Chem Rev. 2014;114(21):10869-939. doi: 10.1021/cr400532z.
- Lal S, Clare SE, Halas NJ. Nanoshell-enabled photothermal cancer therapy: impending clinical impact. Acc Chem Res. 2008;41(12):1842-51. doi: 10.1021/ar800150g. PubMed PMID: 19053240.
- Chen J, Ning C, Zhou Z, Yu P, Zhu Y, Tan G, et al. Nanomaterials as photothermal therapeutic agents. Prog Mater Sci. 2019;99:1-26. doi: 10.1016/j.pmatsci.2018.07.005.
- Bergamini CM, Gambetti S, Dondi A, Cervellati C. Oxygen, reactive oxygen species and tissue damage. Curr Pharm Des. 2004;10(14):1611-26. doi: 10.2174/1381612043384664.
- Jin H, Zhong X, Wang Z, Huang X, Ye H, Ma S, et al. Sonodynamic effects of hematoporphyrin monomethyl ether on CNE-2 cells detected by atomic force microscopy. J Cell Biochem. 2011;112(1):169-78. doi: 10.1002/jcb.22912. PubMed PMID: 21053362.
- Wan G-Y, Liu Y, Chen B-W, Liu Y-Y, Wang Y-S, Zhang N. Recent advances of sonodynamic therapy in cancer treatment. Cancer Biol Med. 2016;13(3):325. doi: 10.20892/j.issn.2095-3941.2016.0068.
- Gorgizadeh M, Azarpira N, Lotfi M, Daneshvar F, Salehi F, Sattarahmady N, Sonodynamic cancer therapy by a nickel ferrite/carbon nanocomposite on melanoma tumor: In vitro and in vivo studies. Photodiagn Photodyn. 2019;27:27-33. doi: 10.1016/j.pdpdt.2019.05.023.
- Dolmans DE, Fukumura D, Jain RK. Photodynamic therapy for cancer. Nat Rev Cancer. 2003;3(5):380. doi: 10.1038/nrc1071.
- Qian X, Zheng Y, Chen Y. Micro/Nanoparticle-Augmented Sonodynamic Therapy (SDT): Breaking the Depth Shallow of Photoactivation. Adv Mater. 2016;28(37):8097-129. doi: 10.1002/adma.201602012.
- Huang Y, He L, Liu W, Fan C, Zheng W, Wong Y-S, et al. Selective cellular uptake and induction of apoptosis of cancer-targeted selenium nanoparticles. Biomaterials. 2013;34(29):7106-16. doi: 10.1016/j.biomaterials.2013.04.067.
- Yazdani Z, Yadegari H, Heli H. A molecularly imprinted electrochemical nanobiosensor for prostate specific antigen determination. Anal Biochem. 2019;566:116-25. doi: 10.1016/j.ab.2018.11.020.
- Rahi A, Sattarahmady N, Heli H. Zepto-molar electrochemical detection of Brucella genome based on gold nanoribbons covered by gold nanoblooms. Sci Rep. 2015;5:18060. doi: 10.1038/srep18060. PMCID: PMC4677304.
- Ajdari MR, Tondro GH, Sattarahmady N, Parsa A, Heli H. Phytosynthesis of silver nanoparticles using Myrtus communis L. leaf extract and investigation of bactericidal activity. J Electron Mater. 2017;46:6930-5. doi: 10.1007/s11664-017-5784-2.
- Rahi A, Karimian K, Heli H. Nanostructured materials in electroanalysis of pharmaceuticals. Anal Biochem. 2016;497:39-47. doi: 10.1016/j.ab.2015.12.018.
- Khurana A, Tekula S, Saifi MA, Venkatesh P, Godugu C. Therapeutic applications of selenium nanoparticles. Biomed Pharmacother. 2019;111:802-12. doi: 10.1016/j.biopha.2018.12.146.
- Heli H, Pishahang J, Barzegar Amiri H. Synthesis of hexagonal CoAl-layered double hydroxide nanoshales/carbon nanotubes composite for the non-enzymatic detection of hydrogen peroxide. J Electroanal Chem. 2016;768:134-44. doi: 10.1016/j.jelechem.2016.01.042.
- Heli H, Majdi S, Jabbari A, Sattarahmady N, Moosavi-Movahedi AA. Electrooxidation of dextromethorphan on a carbon nanotube-carbon microparticle-ionic liquid composite: Applied to determination in pharmaceutical forms. J Solid State Electr. 2010;14:1515-23. doi: 10.1007/s10008-009-0979-y.
- Pogue BW, Wilson BC. Optical and x-ray technology synergies enabling diagnostic and therapeutic applications in medicine. J Biomed Opt. 2018;23:121610. doi: 10.1117/1.JBO.23.12.121610.
- Canavese G, Ancona A, Racca L, Canta M, Dumontel B, Barbaresco F, Limongi T, Cauda V. Nanoparticle-assisted ultrasound: A special focus on sonodynamic therapyagainst cancer. Chem Eng J. 2018;340:155-72. doi: 10.1016/j.cej.2018.01.060.
- Yu B, Li X, Zheng W, Feng Y, Wong Y-S, Chen T. pH-responsive cancer-targeted selenium nanoparticles: a transformable drug carrier with enhanced theranostic effects. J Mater Chem B. 2014;2(33):5409-18. doi: 10.1039/C4TB00399C.
- Ramasamy T, Ruttala HB, Sundaramoorthy P, Poudel BK, Youn YS, Ku SK, et al. Multimodal selenium nanoshell-capped Au@mSiO2 nanoplatform for NIR-responsive chemo-photothermal therapy against metastatic breast cancer. NPG Asia Mater. 2018;10(4):197. doi: 10.1038/s41427-018-0034-5.
- Liu J, Chen S, Lv L, Song L, Guo S, Huang S. Recent progress in studying curcumin and its nano-preparations for cancer therapy. Curr Pharm Design. 2013;19(11):1974-93. doi: 10.2174/138161213805289327.
- Martins CVB, Da Silva DL, Neres ATM, Magalhaes TFF, Watanabe GA, Modolo LV, Sabino AA, De Fatima A, De Resende MA. Curcumin as a promising antifungal of clinical interest. J Antimicrob Chemother. 2009;63:337-39. doi: 10.1093/jac/dkn488.
- Ribeiro APD, Pavarina AC, Dovigo LN, Brunetti IL, Bagnato VS, Vergani CE, De Souza Costa CA. Phototoxic effect of curcumin on methicillin-resistant Staphylococcus aureus and L929 fibroblasts. Lasers Med Sci. 2013;28:391-98. doi: 10.1007/s10103-012-1064-9.
- Kuttan R, Bhanumathy P, Nirmala K, George MC. Potential anticancer activity of turmeric (Curcuma longa). Cancer Lett. 1985;29:197-202. doi: 10.1016/0304-3835(85)90159-4.
- Choudhuri T, Pal S, Agwarwal ML, Das T, Sa G. Curcumin induces apoptosis in human breast cancer cells through p53-dependent Bax induction. FEBS Lett. 2002;512:334-40. doi: 10.1016/S0014-5793(02)02292-5.
- Javvadi P, Segan AT, Tuttle SW, Koumenis C. The chemopreventive agent curcumin is a potent radiosensitizer of human cervical tumor cells via increased reactive oxygen species production and overactivation of the mitogen-activated protein kinase pathway. Mol Pharmacol. 2008;73:1491-501. doi: 10.1124/mol.107.043554.
- Liu HL, Chen Y, Cui GH, Zhou JF. Curcumin, a potent antitumor reagent, is a novel histone deacetylase inhibitor regulating BNHL cell line Raji proliferation. Acta Pharmacol Sin. 2005;26:603-09. doi: 10.1111/j.1745-7254.2005.00081.x.
- Lopez-Lazaro M. Anticancer and carcinogenic properties of curcumin: considerations for its clinical development as a cancer chemopreventive and chemotherapeutic agent. Mol Nutr Food Res. 2008;52:S103-27. doi: 10.1002/mnfr.200700238.
- Dujic J, Kippenberger S, Ramirez-Bosca A, Diaz-Alperi J, Bereiter-Hahn J, Kaufmann R, Bernd A, Hofmann M. Curcumin in combination with visible light inhibits tumor growth in a xenograft tumor model. Int J Cancer. 2009;124:1422-28. doi: 10.1002/ijc.23997.
- Zeng X, Leung A, Xia X, Yu H, Bai D, Xiang J, et al. Effect of; blue light radiation on curcumin-induced cell death of breast cancer cells. Laser Phys. 2010;20(6):1500-3. doi: 10.1134/S1054660X10110332.
- Dovigo LN, Pavarina AC, Ribeiro APD, Brunetti IL, Costa CADS, Jacomassi DP, et al. Investigation of the photodynamic effects of curcumin against Candida albicans. Photochem Photobiol. 2011;87(4):895-903. doi: 10.1111/j.1751-1097.2011.00937.x.
- Andrade MC, Ribeiro APD, Dovigo LN, Brunetti IL, Giampaolo ET, Bagnato VS, et al. Effect of different pre-irradiation times on curcumin-mediated photodynamic therapy against planktonic cultures and biofilms of Candida spp. Arch Oral Biol. 2013;58(2):200-10. doi: 10.1016/j.archoralbio.2012.10.011.
- Rahimi-Moghaddam F, Azarpira N, Sattarahmady N. Evaluation of a nanocomposite of PEG-curcumin-gold nanoparticles as a near-infrared photothermal agent: An in vitro and animal model investigation. Laser Med Sci. 2018;33:1769-79. doi: 10.1007/s10103-018-2538-1.
- Rahimi-Moghaddam F, Sattarahmady N, Azarpira N. Gold-Curcumin Nanostructure in Photothermal Therapy on Breast Cancer Cell Line: 650 and 808 nm Diode Lasers as Light Sources. J Biomed Phys Eng. 2018;9(4);473-82. doi: 10.31661/jbpe.v0i0.906. PMID: 31531301. PMCID: PMC6709349
- Sindhu K, Rajaram A, Sreeram K, Rajaram R. Curcumin conjugated gold nanoparticle synthesis and its biocompatibility. Rsc Adv. 2014;4:1808-18. doi: 10.1039/C3RA45345F.
- Hessel CM, Pattani VP, Rasch M, Panthani MG, Koo B, Tunnell JW, et al. Copper selenide nanocrystals for photothermal therapy. Nano Lett. 2011;11(6):2560-6. doi: 10.1021/nl201400z.
- Tian Q, Jiang F, Zou R, Liu Q, Chen Z, Zhu M, et al. Hydrophilic Cu9S5 nanocrystals: a photothermal agent with a 25.7% heat conversion efficiency for photothermal ablation of cancer cells in vivo. ACS Nano. 2011;5(12):9761-71. doi: 10.1021/nn203293t.
- Kokila K, Elavarasan N, Sujatha V. Diospyros montana leaf extract-mediated synthesis of selenium nanoparticles and their biological applications. New J Chem. 2017;41(15):7481-90. doi: 10.1039/C7NJ01124E.
- Song C, Park H, Lee C, Griffin R. Implications of increased tumor blood flow and oxygenation caused by mild temperature hyperthermia in tumor treatment. Int J Hyperther. 2005;21(8):761-7. doi: 10.1080/02656730500204487.
- Alexis F, Rhee JW, Richie JP, et al. New frontiers in nanotechnology for cancer treatment. Urologic Oncology. 2008;26(1):74-85. doi: 10.1016/j.urolonc.2007.03.017.
- Ji Z, Lin G, Lu Q, Meng L, Shen X, Dong L, et al. Targeted therapy of SMMC-7721 liver cancer invitro and invivo with carbon nanotubes based drug delivery system. J Colloid Interf Sci. 2012;365(1):143-9. doi: 10.1016/j.jcis.2011.09.013.
|