- Orgeur M, Brosch R. Evolution of virulence in the Mycobacterium tuberculosis complex. Current opinion in microbiology. 2018;41:68-75. doi: 10.1016/j.mib.2017.11.021. PMID: 29216510.
- Carvalho NB, De Lourdes Bastos M, Souza AS, Netto EM, Arruda S, Santos SB, Carvalho EM. Impaired TNF, IL-1β, and IL-17 production and increased susceptibility to Mycobacterium tuberculosis infection in HTLV-1 infected individuals. Tuberculosis. 2018;108:35-40. doi: 10.1016/j.tube.2017.10.004.
- Overton K, Varma R, Post JJ. Comparison of interferon-γ release assays and the tuberculin skin test for diagnosis of tuberculosis in human immunodeficiency virus: a systematic review. Tuberculosis and respiratory diseases. 2018;81(1):59-72. doi: 10.4046/trd.2017.0072.
- Bedewi Z, Worku A, Mekonnen Y, Yimer G, Medhin G, Mamo G, Pieper R, Ameni G. Molecular typing of Mycobacterium tuberculosis complex isolated from pulmonary tuberculosis patients in central Ethiopia. BMC infectious diseases. 2017;17(1):184. doi: 10.1186/s12879-017-2267-2.
- Somoskovi A, Dormandy J, Parsons LM, Kaswa M, Goh KS, Rastogi N, Salfinger M. Sequencing of the pncA gene in members of the Mycobacterium tuberculosis complex has important diagnostic applications: identification of a species-specific pncA mutation in “Mycobacterium canettii” and the reliable and rapid predictor of pyrazinamide resistance. Journal of clinical microbiology. 2007;45(2):595-9. doi: 10.1128/JCM.01454-06.
- Churchyard GJ, Stevens WS, Mametja LD, McCarthy KM, Chihota V, Nicol MP, Erasmus LK, Ndjeka NO, Mvusi L, Vassall A, Sinanovic E. Xpert MTB/RIF versus sputum microscopy as the initial diagnostic test for tuberculosis: a cluster-randomised trial embedded in South African roll-out of Xpert MTB/RIF. The Lancet Global Health. 2015;3(8):450-7. doi: 10.1016/S2214-109X(15)00100-X.
- Mutinda KA, Kabiru EW, Mwaniki PK. Health seeking behavior, practices of TB and access to health care among TB patients in Machakos County, Kenya. A cross-sectional study. Journal of Biology, Agriculture and Healthcare. 2014;4(14).
- El-Samadony H, Althani A, Tageldin MA, Azzazy HME. Nanodiagnostics for tuberculosis detection. Expert Rev Mol Diagn. 2017;17(5):427-43. doi: 10.1080/14737159.2017.1308825.
- Golichenari B, Velonia K, Nosrati R, Nezami A, Farokhi-Fard A, Abnous K, Behravan J, Tsatsakis AM. Label-free nano-biosensing on the road to tuberculosis detection. Biosensors and Bioelectronics. 2018;113:124-135. doi: 10.1016/j.bios.2018.04.059.
- Gupta S, Kakkar V. Recent technological advancements in tuberculosis diagnostics–A review. Biosensors and Bioelectronics. 2018;115:14-29. doi: 10.1016/j.bios.2018.05.017.
- Golichenari B, Nosrati R, Farokhi-Fard A, Abnous K, Vaziri F, Behravan J. Nano-biosensing approaches on tuberculosis: Defy of aptamers. Biosensors and Bioelectronics. 2018;117:319-331. doi: 10.1016/j.bios.2018.06.025.
- Sztajnbok F, Boechat NL, Ribeiro SB, Oliveira SK, Sztajnbok DC, Sant’Anna CC. Tuberculin skin test and ELISPOT/T. SPOT. TB in children and adolescents with juvenile idiopathic arthritis. Pediatric Rheumatology. 2014;12(1):17. doi: 10.1186/1546-0096-12-17.
- Kasempimolporn S, Thaveekarn W, Promrungreang K, Khow O, Boonchang S, Sitprija V. Improved Serodiagnostic Sensitivity of Strip Test for Latent Tuberculosis. J Clin Diagn Res. 2017;11(6):DC01–DC03. doi: 10.7860/JCDR/2017/25860.9994. PubMed PMID: 28764156. PubMed PMCID: PMC5535349.
- Chatterjee D, Pramanik AK. Tuberculosis in the african continent: A comprehensive review. Pathophysiology. 2015;22(1):73-83. doi: 10.1016/j.pathophys.2014.12.005.
- Waage AS, Vardund T, Lund V, Kapperud G. Detection of low numbers of Salmonella in environmental water, sewage and food samples by a nested polymerase chain reaction assay. Journal of applied microbiology. 1999;87(3):418-28. doi: 10.1046/j.1365-2672.1999.00835.x.
- Nazari-Vanani R, Karimian K, Azarpira N, Heli H. Capecitabine-loaded nanoniosomes and evaluation of anticancer efficacy. Artificial cells, nanomedicine, and biotechnology. 2019;47(1):420-6. doi: 10.1080/21691401.2018.1559179.
- Sattarahmady N, Tondro GH, Gholchin M, Heli H. Gold nanoparticles biosensor of Brucella spp. genomic DNA: Visual and spectrophotometric detections. Biochemical engineering journal. 2015;97:1-7. doi: 10.1016/j.bej.2015.01.010.
- Yazdani Z, Yadegari H, Heli H. A molecularly imprinted electrochemical nanobiosensor for prostate specific antigen determination. Anal Biochem. 2019;566:116-25.
- Negahdary M, Heli H. Applications of nanoflowers in biomedicine. Recent patents on nanotechnology. 2018;12(1):22-33. doi: 10.2174/1872210511666170911153428.
- Castro C, Rosillo C, Tsutsui H. Characterizing effects of humidity and channel size on imbibition in paper-based microfluidic channels. Microfluidics and Nanofluidics. 2017;21(2):21. doi: 10.1007/s10404-017-1860-4.
- Chen F, Ming X, Chen X, Gan M, Wang B, Xu F, Wei H. Immunochromatographic strip for rapid detection of Cronobacter in powdered infant formula in combination with silica-coated magnetic nanoparticles separation and 16S rRNA probe. Biosensors and Bioelectronics. 2014;61:306-13. doi: 10.1016/j.bios.2014.05.033.
- Jauset-Rubio M, Svobodová M, Mairal T, McNeil C, Keegan N, Saeed A, Abbas MN, El-Shahawi MS, Bashammakh AS, Alyoubi AO. Ultrasensitive, rapid and inexpensive detection of DNA using paper based lateral flow assay. Scientific reports. 2016;6:37732. doi: 10.1038/srep37732.
- Zamora-Gálvez A, Morales-Narváez E, Romero J, Merkoçi A. Photoluminescent lateral flow based on non-radiative energy transfer for protein detection in human serum. Biosensors and Bioelectronics. 2018;100:208-13. doi: 10.1016/j.bios.2017.09.013.
- Yager P, Edwards T, Fu E, Helton K, Nelson K, Tam MR, Weigl BH. Microfluidic diagnostic technologies for global public health. Nature. 2006;442(7101):412-18. doi: 10.1038/nature05064.
- Le TT, Chang P, Benton DJ, McCauley JW, Iqbal M, Cass AE. Dual recognition element lateral flow assay toward multiplex strain specific influenza virus detection. Analytical chemistry. 2017;89(12):6781-6. doi: 10.1021/acs.analchem.7b01149.
- Qiu X, Song L, Yang S, Guo M, Yuan Q, Ge S, Min X, Xia N. A fast and low-cost genotyping method for hepatitis B virus based on pattern recognition in point-of-care settings. Scientific reports. 2016;6:28274. doi: 10.1038/srep28274.
- Cunningham J, Hasker E, Das P, El Safi S, Goto H, Mondal D, et al. A global comparative evaluation of commercial immunochromatographic rapid diagnostic tests for visceral leishmaniasis. Clin Infect Dis. 2012;55(10):1312-9. doi: 10.1093/cid/cis716. PubMed PMID: 22942208. PubMed PMCID: PMC3478143.
- Moody A. Rapid diagnostic tests for malaria parasites. Clin Microbiol Rev. 2002;15(1):66-78. doi: 10.1128/CMR.15.1.66-78.2002.
- Ketema F, Zeh C, Edelman DC, Saville R, Constantine NT. Assessment of the Performance of a Rapid, Lateral Flow Assay for the Detection of Antibodies to HIV. J Acquir Immune Defic Syndr. 2001;27(1):63-70. doi: 10.1097/00126334-200105010-00011. PubMed PMID: 11404522.
- Andreeva IP, Grigorenko VG, Egorov AM, Osipov AP. Quantitative Lateral Flow Immunoassay for Total Prostate Specific Antigen in Serum. Anal Lett. 2016;49(4):579-88. doi: 10.1080/00032719.2015.1075130.
- Gao X, Xu L-P, Wu T, Wen Y, Ma X, Zhang X. An enzyme-amplified lateral flow strip biosensor for visual detection of microRNA-224. Talanta. 2016;146:648-54. doi: 10.1016/j.talanta.2015.06.060. PubMed PMID: 26695313.
- Ma Q, Liu H, Ye F, Xiang G, Shan W, Xing W. Rapid and visual detection of Mycobacterium tuberculosis complex using recombinase polymerase amplification combined with lateral flow strips. Molecular and Cellular Probes. 2017;36:43-9. doi: 10.1016/j.mcp.2017.08.004. PubMed PMID: 28842221.
- Sun Y, Chen J, Li J, Xu Y, Jin H, Xu N, et al. Novel approach based on one-tube nested PCR and a lateral flow strip for highly sensitive diagnosis of tuberculous meningitis. PLoS One. 2017;12(10):e0186985. doi: 10.1371/journal.pone.0186985. PubMed PMID: 29084241. PubMed PMCID: PMC5662171.
- Kamphee H, Chaiprasert A, Prammananan T, Wiriyachaiporn N, Kanchanatavee A, Dharakul T. Rapid molecular detection of multidrug-resistant tuberculosis by PCR-nucleic acid lateral flow immunoassay. PLoS One. 2015;10(9):e0137791. doi: 10.1371/journal.pone.0137791.
- Pavankumar AR, Engström A, Liu J, Herthnek D, Nilsson M. Proficient detection of multi-drug-resistant Mycobacterium tuberculosis by padlock probes and lateral flow nucleic acid biosensors. Anal Chem. 2016;88(8):4277-84. doi: 10.1021/acs.analchem.5b04312.
- Joon D, Nimesh M, Gupta S, Kumar C, Varma-Basil M, Saluja D. Development and evaluation of rapid and specific sdaA LAMP-LFD assay with Xpert MTB/RIF assay for diagnosis of tuberculosis. J Microbiol Methods. 2019;159:161-6. doi: 10.1016/j.mimet.2019.03.002.
- Qin C, Gao Y, Wen W, Zhang X, Wang S. Visual multiple recognition of protein biomarkers based on an array of aptamer modified gold nanoparticles in biocomputing to strip biosensor logic operations. Biosensors and Bioelectronics. 2016;79:522-30. doi: 10.1016/j.bios.2015.12.096.
- Parsons LM, Brosch R, Cole ST, Somoskövi Á, Loder A, Bretzel G, et al. Rapid and simple approach for identification of Mycobacterium tuberculosis complex isolates by PCR-based genomic deletion analysis. J Clin Microbiol. 2002;40(7):2339-45. doi: 10.1128/JCM.40.7.2339-2345.2002.
- Konstantou JK, Ioannou PC, Christopoulos TK. Dual-allele dipstick assay for genotyping single nucleotide polymorphisms by primer extension reaction. Eur J Hum Genet. 2009;17(1):105. doi: 10.1038/ejhg.2008.139.
- Kalogianni DP, Goura S, Aletras AJ, Christopoulos TK, Chanos MG, Christofidou M, et al. Dry reagent dipstick test combined with 23S rRNA PCR for molecular diagnosis of bacterial infection in arthroplasty. Anal Biochem. 2007;361(2):169-75. doi: 10.1016/j.ab.2006.11.013. PubMed PMID: 17196544.
|