- Blair JM, Webber MA, Baylay AJ, Ogbolu DO, Piddock LJ. Molecular mechanisms of antibiotic resistance. Nat Rev Microbiol. 2015;13:42-51. doi: 10.1038/nrmicro3380. PubMed PMID: 25435309.
- Jia R, Yang D, Xu D, Gu T. Anaerobic Corrosion of 304 Stainless Steel Caused by the Pseudomonas aeruginosa Biofilm. Front Microbiol. 2017;8:2335. doi: 10.3389/fmicb.2017.02335. PubMed PMID: 29230206; PubMed Central PMCID: PMC5712129.
- Magiorakos AP, Srinivasan A, Carey RB, Carmeli Y, Falagas ME, Giske CG, et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect. 2012;18:268-81. doi: 10.1111/j.1469-0691.2011.03570.x. PubMed PMID: 21793988.
- Strateva T, Yordanov D. Pseudomonas aeruginosa - a phenomenon of bacterial resistance. J Med Microbiol. 2009;58:1133-48. doi: 10.1099/jmm.0.009142-0. PubMed PMID: 19528173.
- Breidenstein EB, De la Fuente-Nunez C, Hancock RE. Pseudomonas aeruginosa: all roads lead to resistance. Trends Microbiol. 2011;19:419-26. doi: 10.1016/j.tim.2011.04.005. PubMed PMID: 21664819.
- Henderson TA, Morries LD. Near-infrared photonic energy penetration: can infrared phototherapy effectively reach the human brain? Neuropsychiatr Dis Treat. 2015;11:2191-208. doi: 10.2147/NDT.S78182. PubMed PMID: 26346298; PubMed Central PMCID: PMC4552256.
- Ferreyra DD, Reynoso E, Cordero P, Spesia MB, Alvarez MG, Milanesio ME, et al. Synthesis and properties of 5,10,15,20-tetrakis[4-(3-N,N-dimethylaminopropoxy)phenyl] chlorin as potential broad-spectrum antimicrobial photosensitizers. J Photochem Photobiol B. 2016;158:243-51. doi: 10.1016/j.jphotobiol.2016.02.021. PubMed PMID: 26994333.
- Negahdary M, Heli H. Applications of Nanoflowers in Biomedicine. Recent Pat Nanotechnol. 2018;12:22-33. doi: 10.2174/1872210511666170911153428. PubMed PMID: 28901846.
- Khatami M, Alijani HQ, Heli H, Sharifi I. Rectangular shaped zinc oxide nanoparticles: Green synthesis by Stevia and its biomedical efficiency. Ceramics International. 2018;44:15596-602. doi: 10.1016/j.ceramint.2018.05.224.
- Khatami M, Mortazavi SM, Kishani-Farahani Z, Amini A, Amini E, Heli H. Biosynthesis of Silver Nanoparticles Using Pine Pollen and Evaluation of the Antifungal Efficiency. Iran J Biotechnol. 2017;15:95-101. doi: 10.15171/ijb.1436. PubMed PMID: 29845056; PubMed Central PMCID: PMC5811059.
- Bruchez Jr M, Moronne M, Gin P, Weiss S, Alivisatos AP. Semiconductor nanocrystals as fluorescent biological labels. Science. 1998;281:2013-6. PubMed PMID: 9748157.
- Thanou M. Nanoparticles for drug and gene delivery. Encyclopedia of Biophysics. 2013:1686-91. doi: 10.1007/978-3-642-16712-6_709.
- Heli H, Rahi A. Synthesis and Applications of Nanoflowers. Recent Pat Nanotechnol. 2016;10:86-115. PubMed PMID: 27502388.
- Nazari-Vanani R, Azarpira N, Heli H. Development of self-nanoemulsifying drug delivery systems for oil extracts of Citrus aurantium L. blossoms and Rose damascena and evaluation of anticancer properties. Journal of Drug Delivery Science and Technology. 2018;47:330-6. doi: 10.1016/j.jddst.2018.08.003.
- Nazari-Vanani R, Sattarahmady N, Yadegari H, Heli H. A novel and ultrasensitive electrochemical DNA biosensor based on an ice crystals-like gold nanostructure for the detection of Enterococcus faecalis gene sequence. Colloids Surf B Biointerfaces. 2018;166:245-53. doi: 10.1016/j.colsurfb.2018.03.025. PubMed PMID: 29602079.
- Rahi A, Sattarahmady N, Heli H. An ultrasensitive electrochemical genosensor for Brucella based on palladium nanoparticles. Anal Biochem. 2016;510:11-7. doi: 10.1016/j.ab.2016.07.012. PubMed PMID: 27423961.
- Ajdari M, Tondro G, Sattarahmady N, Parsa A, Heli H. Phytosynthesis of Silver Nanoparticles Using Myrtus communis L. Leaf Extract and Investigation of Bactericidal Activity. Journal of Electronic Materials. 2017;46:6930-5. doi: 10.1007/s11664-017-5784-2.
- Khatami M, Heli H, Jahani PM, Azizi H, Nobre MAL. Copper/copper oxide nanoparticles synthesis using Stachys lavandulifolia and its antibacterial activity. Iet Nanobiotechnology. 2017;11:709-13. doi: 10.1049/iet-nbt.2016.0189.
- Khatami M, Alijani HQ, Heli H, Sharifi I. Rectangular shaped zinc oxide nanoparticles: Green synthesis by Stevia and its biomedical efficiency. Ceramics International. 2018;44:15596-602. doi: 10.1016/j.ceramint.2018.05.224.
- Negahdary M, Behjati-Ardakani M, Sattarahmady N, Yadegari H, Heli H. Electrochemical aptasensing of human cardiac troponin I based on an array of gold nanodumbbells-Applied to early detection of myocardial infarction. Sensors and Actuators B: Chemical. 2017;252:62-71. doi: 10.1016/j.snb.2017.05.149.
- Negahdary M, Behjati-Ardakani M, Sattarahmady N, Heli H. An Aptamer-based Biosensor for Troponin I Detection in Diagnosis of Myocardial Infarction. J Biomed Phys Eng. 2018;8:167-78. PubMed PMID: 29951443; PubMed Central PMCID: PMC6015642.
- Heli H. A study of double stranded DNA adsorption on aluminum surface by means of electrochemical impedance spectroscopy. Colloids Surf B Biointerfaces. 2014;116:526-30. doi: 10.1016/j.colsurfb.2014.01.046. PubMed PMID: 24576822.
- Mahtab R, Rogers JP, Murphy CJ. Protein-sized quantum dot luminescence can distinguish between” straight”,” bent”, and” kinked” oligonucleotides. J Am Chem Soc. 1995;117:9099-100. doi: 10.1021/ja00140a040.
- Harrison BS, Atala A. Carbon nanotube applications for tissue engineering. Biomaterials. 2007;28:344-53. doi: 10.1016/j.biomaterials.2006.07.044.
- Heidari M, Sattarahmady N, Javadpour S, Azarpira N, Heli H, Mehdizadeh A, et al. Effect of Magnetic Fluid Hyperthermia on Implanted Melanoma in Mouse Models. Iran J Med Sci. 2016;41:314-21. PubMed PMID: 27365553; PubMed Central PMCID: PMC4912650.
- Molday RS, Molday LL. Separation of cells labeled with immunospecific iron dextran microspheres using high gradient magnetic chromatography. FEBS Lett. 1984;170:232-8. PubMed PMID: 6373372.
- Sattarahmady N, Heidari M, Zare T, Lotfi M, Heli H. Zinc–Nickel Ferrite Nanoparticles as a Contrast Agent in Magnetic Resonance Imaging. Applied Magnetic Resonance. 2016;47:925-35. doi: 10.1007/s00723-016-0801-9.
- Mody VV, Siwale R, Singh A, Mody HR. Introduction to metallic nanoparticles. J Pharm Bioallied Sci. 2010;2:282-9. doi: 10.4103/0975-7406.72127. PubMed PMID: 21180459; PubMed Central PMCID: PMC2996072.
- Sattarahmady N, Rezaie-Yazdi M, Tondro GH, Akbari N. Bactericidal laser ablation of carbon dots: An in vitro study on wild-type and antibiotic-resistant Staphylococcus aureus. J Photochem Photobiol B. 2017;166:323-32. doi: 10.1016/j.jphotobiol.2016.12.006. PubMed PMID: 28024283.
- Singh R, Torti SV. Carbon nanotubes in hyperthermia therapy. Adv Drug Deliv Rev. 2013;65:2045-60. doi: 10.1016/j.addr.2013.08.001. PubMed PMID: 23933617; PubMed Central PMCID: PMC3914717.
- Juzenas P, Chen W, Sun YP, Coelho MA, Generalov R, Generalova N, et al. Quantum dots and nanoparticles for photodynamic and radiation therapies of cancer. Adv Drug Deliv Rev. 2008;60:1600-14. doi: 10.1016/j.addr.2008.08.004. PubMed PMID: 18840487; PubMed Central PMCID: PMC2695009.
- Jang J, Yoon H. Multigram-scale fabrication of monodisperse conducting polymer and magnetic carbon nanoparticles. Small. 2005;1:1195-9. doi: 10.1002/smll.200500237. PubMed PMID: 17193418.
- Vardharajula S, Ali SZ, Tiwari PM, Eroglu E, Vig K, Dennis VA, et al. Functionalized carbon nanotubes: biomedical applications. Int J Nanomedicine. 2012;7:5361-74. doi: 10.2147/IJN.S35832. PubMed PMID: 23091380; PubMed Central PMCID: PMC3471599.
- Kagan VE, Konduru NV, Feng W, Allen BL, Conroy J, Volkov Y, et al. Carbon nanotubes degraded by neutrophil myeloperoxidase induce less pulmonary inflammation. Nat Nanotechnol. 2010;5:354-9. doi: 10.1038/nnano.2010.44. PubMed PMID: 20364135.
- Akasaka T, Matsuoka M, Hashimoto T, Abe S, Uo M, Watari F. The bactericidal effect of carbon nanotube/agar composites irradiated with near-infrared light on Streptococcus mutans. Materials Science and Engineering: B. 2010;173:187-90. doi: 10.1016/j.mseb.2010.01.001.
- Au KM, Lu Z, Matcher SJ, Armes SP. Polypyrrole nanoparticles: a potential optical coherence tomography contrast agent for cancer imaging. Adv Mater. 2011;23:5792-5. doi: 10.1002/adma.201103190. PubMed PMID: 22102372.
- Yang K, Xu H, Cheng L, Sun C, Wang J, Liu Z. In vitro and in vivo near-infrared photothermal therapy of cancer using polypyrrole organic nanoparticles. Adv Mater. 2012;24:5586-92. doi: 10.1002/adma.201202625. PubMed PMID: 22907876.
- Perez JM, Calderon IL, Arenas FA, Fuentes DE, Pradenas GA, Fuentes EL, et al. Bacterial toxicity of potassium tellurite: unveiling an ancient enigma. PLoS One. 2007;2:e211. doi: 10.1371/journal.pone.0000211. PubMed PMID: 17299591; PubMed Central PMCID: PMC1784070.
- Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72:248-54. PubMed PMID: 942051.
- Yousefi M, Dadashpour M, Hejazi M, Hasanzadeh M, Behnam B, De la Guardia M, et al. Anti-bacterial activity of graphene oxide as a new weapon nanomaterial to combat multidrug-resistance bacteria. Mater Sci Eng C Mater Biol Appl. 2017;74:568-81. doi: 10.1016/j.msec.2016.12.125. PubMed PMID: 28254332.
- Domingue G, Costerton JW, Brown MR. Bacterial doubling time modulates the effects of opsonisation and available iron upon interactions between Staphylococcus aureus and human neutrophils. FEMS Immunol Med Microbiol. 1996;16:223-8. doi: 10.1111/j.1574-695X.1996.tb00139.x. PubMed PMID: 9116639.
- Du C, Wang A, Fei J, Zhao J, Li J. Polypyrrole-stabilized gold nanorods with enhanced photothermal effect towards two-photon photothermal therapy. Journal of Materials Chemistry B. 2015;3:4539-45. doi: 10.1039/C5TB00560D.
- Gao L, Liu R, Gao F, Wang Y, Jiang X, Gao X. Plasmon-mediated generation of reactive oxygen species from near-infrared light excited gold nanocages for photodynamic therapy in vitro. ACS Nano. 2014;8:7260-71. doi: 10.1021/nn502325j. PubMed PMID: 24992260.
- Huang X, Chen G, Pan J, Chen X, Huang N, Wang X, et al. Effective PDT/PTT dual-modal phototherapeutic killing of pathogenic bacteria by using ruthenium nanoparticles. Journal of Materials Chemistry B. 2016;4:6258-70. doi: 10.1039/C6TB01122E.
- Samia AC, Chen X, Burda C. Semiconductor quantum dots for photodynamic therapy. J Am Chem Soc. 2003;125:15736-7. doi: 10.1021/ja0386905. PubMed PMID: 14677951.
- Wang Y-W, Fu Y-Y, Wu L-J, Li J, Yang H-H, Chen G-N. Targeted photothermal ablation of pathogenic bacterium, Staphylococcus aureus, with nanoscale reduced graphene oxide. Journal of Materials Chemistry B. 2013;1:2496-501. doi: 10.1039/C3TB20144A.
- Vankayala R, Kuo C-L, Sagadevan A, Chen P-H, Chiang C-S, Hwang KC. Morphology dependent photosensitization and formation of singlet oxygen (1 Δ g) by gold and silver nanoparticles and its application in cancer treatment. Journal of Materials Chemistry B. 2013;1:4379-87. doi: 10.1039/C3TB2080.
- Vankayala R, Huang YK, Kalluru P, Chiang CS, Hwang KC. First demonstration of gold nanorods-mediated photodynamic therapeutic destruction of tumors via near infra-red light activation. Small. 2014;10:1612-22. doi: 10.1002/smll.201302719. PubMed PMID: 24339243.
- Fu XJ, Fang Y, Yao M. Antimicrobial photodynamic therapy for methicillin-resistant Staphylococcus aureus infection. Biomed Res Int. 2013;2013:159157. doi: 10.1155/2013/159157. PubMed PMID: 23555074; PubMed Central PMCID: PMC3600246.
|