تعداد نشریات | 20 |
تعداد شمارهها | 1,149 |
تعداد مقالات | 10,518 |
تعداد مشاهده مقاله | 45,415,561 |
تعداد دریافت فایل اصل مقاله | 11,291,377 |
The effect of occlusal loading on gingival microleakage of bulk fill composites compared with a conventional composite | ||
Journal of Dentistry | ||
مقاله 2، دوره 21، شماره 2 - شماره پیاپی 67، شهریور 2020، صفحه 87-94 اصل مقاله (452.07 K) | ||
نوع مقاله: Original Article | ||
شناسه دیجیتال (DOI): 10.30476/dentjods.2019.77861.0 | ||
نویسندگان | ||
Razieh Hoseinifar* 1؛ Maryam Mofidi2؛ Nima Malekhoseini3 | ||
1Oral and Dental Diseases Research Center, Dept. of Operative Dentistry, School of Dentistry, Kerman University of Medical Sci-ences, Kerman, Iran. | ||
2Dept. of Operative Dentistry, School of Dentistry, Kerman University of Medical Sciences, Kerman, Iran. | ||
3Dental Student, School of Dentistry, Kerman University of Medical Sciences, Kerman, Iran. | ||
چکیده | ||
Statement of the Problem: Bulk fill composites have been introduced over the recent years in order to accelerate the process of tooth restoration by inserting composite in bulk up to 4mm thickness. Purpose: This in vitro study aims to evaluate the effect of occlusal loading on the gingival microleakage of bulk fill composites compared with a conventional composite. Materials and Method: In this experimental study, box only class II cavities with gingival margins placed 1mm below the cemento-enamel junction were prepared on the mesial and distal surfaces of 36 maxillary premolars (72 cavities). The samples were divided into three groups and restored as follows: Group 1 (Tetric N-Ceram, incremental filling), Group 2 (X-tra fill, bulk filling), Group 3 (Tetric N-Ceram Bulk Fill, bulk filling). All restorations were thermocycled for 2000 cycles (5-50̊C), and then half of the samples were subjected to 200,000 cycles of loading. All the specimens were immersed in 0.5% basic fuchsin for 48 hours, and then, sectioned and evaluated for microleakage with a stereomicroscope. Data were analyzed using Kruskal-Wallis, and Mann-Whitney U-tests. p Results: There were no significant differences among the gingival microleakage of three composites in both unloaded and loaded groups. Also, no statistically significant difference was found between the microleakage of unloaded and loaded groups in all materials. Conclusion: Occlusal loading did not affect the gingival microleakage of bulk fill composites, and the microleakage of class II cavities restored with the bulk filling technique was similar to that of restored with the incremental technique. | ||
کلیدواژهها | ||
Composite Resin؛ Dental Leakage؛ Polymerization | ||
سایر فایل های مرتبط با مقاله
|
||
مراجع | ||
1. Joseph A, Santhosh L, Hegde J, Panchajanya S, George R. Microleakage evaluation of Silorane-based composite and methacrylate-based composite in class II box preparations using two different layering techniques: an in vitro study. Indian J Dent Res. 2013; 24:148. [PubMed] [Google Scholar]
2. Klautau EB, Carneiro KK, Lobato MF, Machado SMM, Silva e Souza MH. Low shrinkage composite resins: influence on sealing ability in unfavorable C-factor cavities. Braz Oral Res. 2011; 25: 5–12. [PubMed] [Google Scholar]
3. Yamazaki PCV, Bedran-Russo AKB, Pereira PNR, Wsift EJ. Microleakage evaluation of a new low-shrinkage composite restorative material. Oper Dent. 2006; 31: 670–676. [PubMed] [Google Scholar]
4. Tavangar M, Tayefeh Davalloo R, Darabi F, Karambin M, Kazemi R. A Comparative Evaluation of Microleakage of Two Low-Shrinkage Composites with a Conventional Resin Composite: An In Vitro Assessment. J Dent Shiraz. 2016; 17:55–61. [PMC free article] [PubMed] [Google Scholar]
5. Bagis YH, Baltacioglu IH, Kahyaogullari S. Comparing microleakage and the layering methods of silorane-based resin composite in wide Class II MOD cavities. Oper Dent. 2009; 34:578–585. [PubMed] [Google Scholar]
6. Usha H, Kumari A, Mehta D, Kaiwar A, Jain N. Comparing microleakage and layering methods of silorane-based resin composite in class V cavities using confocal microscopy: An in vitro study. J Conserv Dent. 2011; 14: 164–168. [PMC free article] [PubMed] [Google Scholar]
7. Orłowski M, Tarczydło B, Chałas R. Evaluation of marginal integrity of four bulk-fill dental composite materials: In vitro study. Sci World J. 2015; 2015: 701262. [PMC free article] [PubMed] [Google Scholar]
8. Leprince JG, Palin WM, Vanacker J, Sabbagh J, Devaux J, Leloup G. Physico-mechanical characteristics of commercially available bulk-fill composites. J Dent. 2014; 42: 993–1000. [PubMed] [Google Scholar]
9. Tarle Z, Attin T, Marovic D, Andermatt L, Ristic M, Taubock TT. Influence of irradiation time on subsurface degree of conversion and microhardness of high-viscosity bulk-fill resin composites. Clin Oral Investig. 2015; 19:831–840. [PubMed] [Google Scholar]
10. Zorzin J, Maier E, Harre S, Fey T, Belli R, Lohbauer U, et al. Bulk-fill resin composites: Polymerization properties and extended light curing. Dent Mater. 2015; 31:293–301. [PubMed] [Google Scholar]
11. Olegário IC, Hesse D, Bönecker M, Imparato JCP, Braga MM, Mendes FM, et al. Effectiveness of conventional treatment using bulk-fill composite resin versus Atraumatic Restorative Treatments in primary and permanent dentition: a pragmatic randomized clinical trial. BMC Oral Health. 2017; 17: 34–41. [PMC free article] [PubMed] [Google Scholar]
12. Bedran-de-Castro AKB, Pereira PNR, Pimenta LAF, Thompson JY. Effect of thermal and mechanical load cycling on microtensile bond strength of a total-etch adhesive system. Oper Dent. 2004; 29: 150–156. [PubMed] [Google Scholar]
13. Eirich FR. Degradation of dental polymers. J Polym Sci. 2003; 25: 303–304. [Google Scholar]
14. Jung JH, Park SH. Comparison of polymerization shrinkage, physical properties and marginal daptation of fowable and restorative bulk fill resin-based composites. Oper Dent. 2017; 42: 375–386. [PubMed] [Google Scholar]
15. Li H, Burrow MF, Tyas MJ. The effect of load cycling on the nanoleakage of dentin bonding systems. Dent Mater. 2002;18:111–119. [PubMed] [Google Scholar]
16. Felipe L, Schneider J. Microleakage evaluation of composite restorations submitted to load cycling. Cienc Odontol Bras. 2004;7:27–33. [Google Scholar]
17. Heintze SD, Monreal D, Peschke A. Marginal Quality of Class II Composite Restorations Placed in Bulk Compared to an Incremental Technique: Evaluation with SEM and Stereomicroscope. J Adhes Dent. 2015; 17: 147–154. [PubMed] [Google Scholar]
18. Furness A, Tadros MY, Looney SW, Rueggeberg FA. Effect of bulk/incremental fill on internal gap formation of bulk-fill composites. J Dent. 2014; 42: 439–449. [PubMed] [Google Scholar]
19. Kim RJY, Kim YJ, Choi NS, Lee IB. Polymerization shrinkage, modulus and shrinkage stress related to tooth-restoration interfacial debonding in bulk-fill composites. J Dent. 2015; 43: 430–439. [PubMed] [Google Scholar]
20. Bavaria SR, Shah NC, Shah RP, Makati DJ. A comparative evaluation of microleakage of two different bulk fill composites with ever X posterior composite for class II restorations by dye extraction method- An in Vitro Study. IOSR J Dent Med Sci. 2017; 16:72–77. [Google Scholar]
21. Peutzfeldt A, Asmussen E. Determinants of in vitro gap formation of resin composites. J Dent. 2004; 32: 109–115. [PubMed] [Google Scholar]
22. Skalecka-Sadel A, Grzebieluch W. The marginal sealing of class II composite resin restoration located in enamel- Evaluation in vitro. Dent Med Probl. 2012; 49: 502–509. [Google Scholar]
23. Heintze SD. How to qualify and validate wear simulation devices and methods. Dent Mater. 2006; 22:712–734. [PubMed] [Google Scholar]
24. Shahidi C, Krejci I, Dietschi D. In Vitro evaluation of marginal adaptation of direct class II composite restorations made of different “‘Low-Shrinkage’” systems. Oper Dent. 2017; 42:273–283. [PubMed] [Google Scholar]
25. Campos EA, Ardu S, Lefever D, Jassé FF, Bortolotto T, Krejci I. Marginal adaptation of class II cavities restored with bulk-fill composites. J Dent. 2014; 42:575–581. [PubMed] [Google Scholar]
26. Benetti AR, Havndrup-Pedersen C, Honore D, Pedersen MK, Pallesen U. Bulk-fill resin composites: polymerization contraction, depth of cure, and gap formation. Oper Dent. 2015; 40:190–200. [PubMed] [Google Scholar]
27. Abed YA, Sabry HA, Alrobeigy NA. ScienceDirect Degree of conversion and surface hardness of bulk-fill composite versus incremental-fill composite. Tanta Dent J. 2015; 12:71–80. [Google Scholar]
28. Papadogiannis D, Tolidis K, Gerasimou P, Lakes R, Papadogiannis Y. Viscoelastic properties, creep behavior and degree of conversion of bulk fill composite resins. Dent Mater. 2015; 31:1533–1541. [PubMed] [Google Scholar]
29. Ferracane JL, Condon JR. In vitro evaluation of the marginal degradation of dental composites under simulated occlusal loading. Dent Mater. 1999; 15:262–267. [PubMed] [Google Scholar]
30. Webber FBM, Marin GC, Saram P, Lolli LF, Marson FC. Bulk-Fill Resin-Based Composites: Microleakage of Class II Restorations. J Surg Clin Dent. 2014; 2: 15–19. [Google Scholar]
31. Kleverlaan CJ, Feilzer AJ. Polymerization shrinkage and contraction stress of dental resin composites. Dent Mater. 2005; 21:1150–1157. [PubMed] [Google Scholar]
32. Garcia D, Yaman P, Dennison J, Neiva GF. Polymerization Shrinkage and Depth of Cure of Bulk Fill Flowable Composite Resins. Oper Dent. 2014; 39: 441–448. [PubMed] [Google Scholar]
33. Krifka S, Federlin M, Hiller K-A, Schmalz G. Microleakage of silorane- and methacrylate-based class V composite restorations. Clin Oral Investig. 2012; 16: 1117–1124. [PubMed] [Google Scholar]
34. Gogna R, Jagadis S, Shashikal K. A comparative in vitro study of microleakage by a radioactive isotope and compressive strength of three nanofilled composite resin restorations. J Conserv Dent. 2011; 14: 128–131. [PMC free article] [PubMed] [Google Scholar]
35. Draughn RA. Compressive Fatigue Limits of Composite Restorative Materials. J Dent Res. 1979; 58:1093–1096. [PubMed] [Google Scholar] | ||
آمار تعداد مشاهده مقاله: 3,064 تعداد دریافت فایل اصل مقاله: 1,885 |