- Geng L, Wang J. Molecular effectors of radiation resistance in colorectal cancer. Precis Radiat Oncol. 2017;1:27-33. doi: 10.1002/pro6.5.
- Bronte G, Rolfo C, Giovannetti E, Cicero G, Pauwels P, Passiglia F, et al. Are erlotinib and gefitinib interchangeable, opposite or complementary for non-small cell lung cancer treatment? Biological, pharmacological and clinical aspects. Crit Rev Oncol Hematol. 2014;89:300-13. doi: 10.1016/j.critrevonc.2013.08.003. PubMed PMID: 24041630.
- Carr BI, Cavallini A, Lippolis C, D’Alessandro R, Messa C, Refolo MG, et al. Fluoro-Sorafenib (regorafenib) effects on hepatoma cells: growth inhibition, quiescence, and recovery. J Cell Physiol. 2013;228:292-7. doi: 10.1002/jcp.24148. PubMed PMID: 22777740; PubMed Central PMCID: PMCPMC4509637.
- Majithia N, Grothey A. regorafenib in the treatment of colorectal cancer. Expert Opin Pharmacother. 2016;17:137-45. doi: 10.1517/14656566.2016.1118054. PubMed PMID: 26559195.
- Yar Saglam AS, Alp E, Elmazoglu Z, Menevse S. Treatment with cucurbitacin B alone and in combination with gefitinib induces cell cycle inhibition and apoptosis via EGFR and JAK/STAT pathway in human colorectal cancer cell lines. Hum Exp Toxicol. 2016;35:526-43. doi: 10.1177/0960327115595686. PubMed PMID: 26183715.
- Williamson JS, Jones HG, Williams N, Griffiths AP, Jenkins G, Beynon J, et al. Extramural vascular invasion and response to neoadjuvant chemoradiotherapy in rectal cancer: Influence of the CpG island methylator phenotype. World J Gastrointest Oncol. 2017;9:209-17. doi: 10.4251/wjgo.v9.i5.209. PubMed PMID: 28567185; PubMed Central PMCID: PMCPMC5434388.
- Moulder JE, Hopwood LE, Volk DM, Davies BM. Radiation induction of drug resistance in RIF-1: correlation of tumor and cell culture results. Int J Radiat Oncol Biol Phys. 1991;20:213-6. PubMed PMID: 1991681.
- Zheng HC. The molecular mechanisms of chemoresistance in cancers. Oncotarget. 2017;8:59950-64. doi: 10.18632/oncotarget.19048. PubMed PMID: 28938696; PubMed Central PMCID: PMCPMC5601792.
- Crea F, Nobili S, Paolicchi E, Perrone G, Napoli C, Landini I, et al. Epigenetics and chemoresistance in colorectal cancer: an opportunity for treatment tailoring and novel therapeutic strategies. Drug Resist Updat. 2011;14:280-96. doi: 10.1016/j.drup.2011.08.001. PubMed PMID: 21955833.
- Singh PK, Campbell MJ. The Interactions of microRNA and Epigenetic Modifications in Prostate Cancer. Cancers (Basel). 2013;5:998-1019. doi: 10.3390/cancers5030998. PubMed PMID: 24202331; PubMed Central PMCID: PMCPMC3795376.
- Hummel R, Hussey DJ, Haier J. MicroRNAs: predictors and modifiers of chemo- and radiotherapy in different tumour types. Eur J Cancer. 2010;46:298-311. doi: 10.1016/j.ejca.2009.10.027. PubMed PMID: 19948396.
- Yang XD, Xu XH, Zhang SY, Wu Y, Xing CG, Ru G, et al. Role of miR-100 in the radioresistance of colorectal cancer cells. Am J Cancer Res. 2015;5:545-59. PubMed PMID: 25973296; PubMed Central PMCID: PMCPMC4396051.
- He J, Hua J, Ding N, Xu S, Sun R, Zhou G, et al. Modulation of microRNAs by ionizing radiation in human gastric cancer. Oncol Rep. 2014;32:787-93. doi: 10.3892/or.2014.3246. PubMed PMID: 24919435.
- Wang P, Zhang J, Zhang L, Zhu Z, Fan J, Chen L, et al. MicroRNA 23b regulates autophagy associated with radioresistance of pancreatic cancer cells. Gastroenterology. 2013;145:1133-43. doi: 10.1053/j.gastro.2013.07.048. PubMed PMID: 23916944.
- Ahmed FE, Vos PW, Jeffries C, Wiley JE, Weidner DA, Mota H, et al. Differences in mRNA and microRNA microarray expression profiles in human colon adenocarcinoma HT-29 cells treated with either Intensity-modulated Radiation Therapy (IMRT), or Conventional Radiation Therapy (RT). Cancer Genomics Proteomics. 2009;6:109-27. PubMed PMID: 19451095.
- Khoshinani HM, Afshar S, Pashaki AS, Mahdavinezhad A, Nikzad S, Najafi R, et al. Involvement of miR-155/FOXO3a and miR-222/PTEN in acquired radioresistance of colorectal cancer cell line. Jpn J Radiol. 2017;35:664-72. doi: 10.1007/s11604-017-0679-y. PubMed PMID: 28879560.
- Lombardo T, Anaya L, Kornblihtt L, Blanco G. Median effect dose and combination index analysis of cytotoxic drugs using flow cytometry. Flow Cytometry-Recent Perspectives. London: IntechOpen; 2012.
- Riccardi C, Nicoletti I. Analysis of apoptosis by propidium iodide staining and flow cytometry. Nat Protoc. 2006;1:1458-61. doi: 10.1038/nprot.2006.238. PubMed PMID: 17406435.
- Pozarowski P, Darzynkiewicz Z. Analysis of cell cycle by flow cytometry. Methods Mol Biol. 2004;281:301-11. doi: 10.1385/1-59259-811-0:301. PubMed PMID: 15220539.
- Servidei T, Riccardi A, Mozzetti S, Ferlini C, Riccardi R. Chemoresistant tumor cell lines display altered epidermal growth factor receptor and HER3 signaling and enhanced sensitivity to gefitinib. Int J Cancer. 2008;123:2939-49. doi: 10.1002/ijc.23902. PubMed PMID: 18803287.
- Witkos TM, Koscianska E, Krzyzosiak WJ. Practical Aspects of microRNA Target Prediction. Curr Mol Med. 2011;11:93-109. PubMed PMID: 21342132; PubMed Central PMCID: PMCPMC3182075.
- Servidei T, Riccardi A, Sanguinetti M, Dominici C, Riccardi R. Increased sensitivity to the platelet-derived growth factor (PDGF) receptor inhibitor STI571 in chemoresistant glioma cells is associated with enhanced PDGF-BB-mediated signaling and STI571-induced Akt inactivation. J Cell Physiol. 2006;208:220-8. doi: 10.1002/jcp.20659. PubMed PMID: 16575905.
- Mutlu P, Baran Y, Ural AU, Avcu F, Dirican B, Beyzadeoglu M, et al. Effect of cobalt-60 (gamma radiation) on multidrug-resistant multiple myeloma cell lines. Cell Biol Int. 2011;35:721-5. doi: 10.1042/CBI20100061. PubMed PMID: 21241250.
- Hopper-Borge EA, Nasto RE, Ratushny V, Weiner LM, Golemis EA, Astsaturov I. Mechanisms of tumor resistance to EGFR-targeted therapies. Expert Opin Ther Targets. 2009;13:339-62. doi: 10.1517/14712590902735795. PubMed PMID: 19236156; PubMed Central PMCID: PMCPMC2670612.
- Xiao M, Cai J, Cai L, Jia J, Xie L, Zhu Y, et al. Let-7e sensitizes epithelial ovarian cancer to cisplatin through repressing DNA double strand break repair. J Ovarian Res. 2017;10:24. doi: 10.1186/s13048-017-0321-8. PubMed PMID: 28376831; PubMed Central PMCID: PMCPMC5379542.
- Shimizu S, Takehara T, Hikita H, Kodama T, Miyagi T, Hosui A, et al. The let-7 family of microRNAs inhibits Bcl-xL expression and potentiates sorafenib-induced apoptosis in human hepatocellular carcinoma. J Hepatol. 2010;52:698-704. doi: 10.1016/j.jhep.2009.12.024. PubMed PMID: 20347499.
- Stahlhut C, Slack FJ. Combinatorial Action of MicroRNAs let-7 and miR-34 Effectively Synergizes with Erlotinib to Suppress Non-small Cell Lung Cancer Cell Proliferation. Cell Cycle. 2015;14:2171-80. doi: 10.1080/15384101.2014.1003008. PubMed PMID: 25714397; PubMed Central PMCID: PMCPMC4615025.
- Kothari V, Mulherkar R. Inhibition of cyclin D1 by shRNA is associated with enhanced sensitivity to conventional therapies for head and neck squamous cell carcinoma. Anticancer Res. 2012;32:121-8. PubMed PMID: 22213296.
- Rajalingam K, Schreck R, Rapp UR, Albert S. Ras oncogenes and their downstream targets. Biochim Biophys Acta. 2007;1773:1177-95. doi: 10.1016/j.bbamcr.2007.01.012. PubMed PMID: 17428555.
- Milosevic Z, Pesic M, Stankovic T, Dinic J, Milovanovic Z, Stojsic J, et al. Targeting RAS-MAPK-ERK and PI3K-AKT-mTOR signal transduction pathways to chemosensitize anaplastic thyroid carcinoma. Transl Res. 2014;164:411-23. doi: 10.1016/j.trsl.2014.06.005. PubMed PMID: 25016932.
- Eberlein CA, Stetson D, Markovets AA, Al-Kadhimi KJ, Lai Z, Fisher PR, et al. Acquired Resistance to the Mutant-Selective EGFR Inhibitor AZD9291 Is Associated with Increased Dependence on RAS Signaling in Preclinical Models. Cancer Res. 2015;75:2489-500. doi: 10.1158/0008-5472.CAN-14-3167. PubMed PMID: 25870145; PubMed Central PMCID: PMCPMC4605607.
- Fang W, Fan Y, Fa Z, Xu J, Yu H, Li P, et al. microRNA-625 inhibits tumorigenicity by suppressing proliferation, migration and invasion in malignant melanoma. Oncotarget. 2017;8:13253-63. doi: 10.18632/oncotarget.14710. PubMed PMID: 28129648; PubMed Central PMCID: PMCPMC5355093.
- Salendo J, Spitzner M, Kramer F, Zhang X, Jo P, Wolff HA, et al. Identification of a microRNA expression signature for chemoradiosensitivity of colorectal cancer cells, involving miRNAs-320a, -224, -132 and let7g. Radiother Oncol. 2013;108:451-7. doi: 10.1016/j.radonc.2013.06.032. PubMed PMID: 23932154.
- Shali H, Ahmadi M, Kafil HS, Dorosti A, Yousefi M. IGF1R and c-met as therapeutic targets for colorectal cancer. Biomed Pharmacother. 2016;82:528-36. doi: 10.1016/j.biopha.2016.05.034. PubMed PMID: 27470393.
- Ma Y, Tang N, Thompson RC, Mobley BC, Clark SW, Sarkaria JN, et al. InsR/IGF1R Pathway Mediates Resistance to EGFR Inhibitors in Glioblastoma. Clin Cancer Res. 2016;22:1767-76. doi: 10.1158/1078-0432.CCR-15-1677. PubMed PMID: 26561558; PubMed Central PMCID: PMCPMC4818693.
- Park YR, Lee ST, Kim SL, Liu YC, Lee MR, Shin JH, et al. MicroRNA-9 suppresses cell migration and invasion through downregulation of TM4SF1 in colorectal cancer. Int J Oncol. 2016;48:2135-43. doi: 10.3892/ijo.2016.3430. PubMed PMID: 26983891.
- Li Y, Zhao L, Li N, Miao Y, Zhou H, Jia L. miR-9 regulates the multidrug resistance of chronic myelogenous leukemia by targeting ABCB1. Oncol Rep. 2017;37:2193-200. doi: 10.3892/or.2017.5464. PubMed PMID: 28260112.
- Courtois G, Gilmore TD. Mutations in the NF-kappaB signaling pathway: implications for human disease. Oncogene. 2006;25:6831-43. doi: 10.1038/sj.onc.1209939. PubMed PMID: 17072331.
- Andersen V, Vogel U, Godiksen S, Frenzel FB, Saebo M, Hamfjord J, et al. Low ABCB1 gene expression is an early event in colorectal carcinogenesis. PLoS One. 2013;8:e72119. doi: 10.1371/journal.pone.0072119. PubMed PMID: 23977225; PubMed Central PMCID: PMCPMC3747088.
|