- Huang S, Ingber DE. Shape-dependent control of cell growth, differentiation, and apoptosis: switching between attractors in cell regulatory networks. Exp Cell Res. 2000;261:91-103. doi: 10.1006/excr.2000.5044. PubMed PMID: 11082279.
- Elowitz MB, Levine AJ, Siggia ED, Swain PS. Stochastic gene expression in a single cell. Science. 2002;297:1183-6. doi: 10.1126/science.1070919. PubMed PMID: 12183631.
- Blake WJ, KAErn M, Cantor CR, Collins JJ. Noise in eukaryotic gene expression. Nature. 2003;422:633-7. doi: 10.1038/nature01546. PubMed PMID: 12687005.
- Aldridge BB, Saez-Rodriguez J, Muhlich JL, Sorger PK, Lauffenburger DA. Fuzzy logic analysis of kinase pathway crosstalk in TNF/EGF/insulin-induced signaling. PLoS Comput Biol. 2009;5:e1000340. doi: 10.1371/journal.pcbi.1000340. PubMed PMID: 19343194. PubMed PMCID: PMC2663056.
- Hatakeyama M, Kimura S, Naka T, Kawasaki T, et al. A computational model on the modulation of mitogen-activated protein kinase (MAPK) and Akt pathways in heregulin-induced ErbB signalling. Biochem J. 2003;373:451-63. doi: 10.1042/BJ20021824. PubMed PMID: 12691603. PubMed PMCID: PMC1223496.
- Chen T, He HL, Church GM. Modeling gene expression with differential equations. Pac Symp Biocomput. 1999:29-40. PubMed PMID: 10380183.
- Chen KC, Wang TY, Tseng HH, Huang CY, Kao CY. A stochastic differential equation model for quantifying transcriptional regulatory network in Saccharomyces cerevisiae. Bioinformatics. 2005;21:2883-90. doi: 10.1093/bioinformatics/bti415. PubMed PMID: 15802287.
- Climescu-Haulica A, Quirk MD. A stochastic differential equation model for transcriptional regulatory networks. BMC Bioinformatics. 2007;8(Suppl 5):S4. doi: 10.1186/1471-2105-8-S5-S4. PubMed PMID: 17570863. PubMed PMCID: PMC1892092.
- Baker RE, Gaffney E, Maini P. Partial differential equations for self-organization in cellular and developmental biology. Nonlinearity. 2008;21:R251-90. doi: 10.1088/0951-7715/21/11/r05.
- Cruz-Monteagudo M, Gonzalez-Diaz H, Aguero-Chapin G, et al. Computational chemistry development of a unified free energy Markov model for the distribution of 1300 chemicals to 38 different environmental or biological systems. J Comput Chem. 2007;28:1909-23. doi: 10.1002/jcc.20730. PubMed PMID: 17405109.
- Anderson DF, Kurtz TG. Continuous time Markov chain models for chemical reaction networks. Design and analysis of biomolecular circuits: Springer; 2011. p. 3-42. doi: 10.1007/978-1-4419-6766-4_1.
- Bolch G, Greiner S, De Meer H, Trivedi KS. Queueing networks and Markov chains: modeling and performance evaluation with computer science applications. New Jersey: John Wiley & Sons; 2006.
- Li F, Long T, Lu Y, Ouyang Q, Tang C. The yeast cell-cycle network is robustly designed. Proc Natl Acad Sci U S A. 2004;101:4781-6. doi: 10.1073/pnas.0305937101. PubMed PMID: 15037758. PubMed PMCID: PMC387325.
- Davidich MI, Bornholdt S. Boolean network model predicts cell cycle sequence of fission yeast. PLoS One. 2008;3:e1672. doi: 10.1371/journal.pone.0001672. PubMed PMID: 18301750. PubMed PMCID: PMC2243020.
- Bornholdt S. Boolean network models of cellular regulation: prospects and limitations. J R Soc Interface. 2008;5 Suppl 1:S85-94. doi: 10.1098/rsif.2008.0132.focus. PubMed PMID: 18508746. PubMed PMCID: PMC2386560.
- Shmulevich I, Dougherty ER, Kim S, Zhang W. Probabilistic Boolean Networks: a rule-based uncertainty model for gene regulatory networks. Bioinformatics. 2002;18:261-74. PubMed PMID: 11847074.
- Shmulevich I, Dougherty ER, Zhang W. From Boolean to probabilistic Boolean networks as models of genetic regulatory networks. Proceedings of the IEEE. 2002;90:1778-92. doi: 10.1109/jproc.2002.804686.
- Liang J, Han J. Stochastic Boolean networks: an efficient approach to modeling gene regulatory networks. BMC Syst Biol. 2012;6:113. doi: 10.1186/1752-0509-6-113. PubMed PMID: 22929591. PubMed PMCID: PMC3532238.
- Figueredo GP, Siebers PO, Aickelin U. Investigating mathematical models of immuno-interactions with early-stage cancer under an agent-based modelling perspective. BMC Bioinformatics. 2013;14 Suppl 6:S6. doi: 10.1186/1471-2105-14-S6-S6. PubMed PMID: 23734575. PubMed PMCID: PMC3633017.
- Pogson M, Holcombe M, Smallwood R, Qwarnstrom E. Introducing spatial information into predictive NF-kappaB modelling--an agent-based approach. PLoS One. 2008;3:e2367. doi: 10.1371/journal.pone.0002367. PubMed PMID: 18523553. PubMed PMCID: PMC2391290.
- Gorochowski TE, Matyjaszkiewicz A, Todd T, et al. BSim: an agent-based tool for modeling bacterial populations in systems and synthetic biology. PLoS One. 2012;7:e42790. doi: 10.1371/journal.pone.0042790. PubMed PMID: 22936991. PubMed PMCID: PMC3427305.
- Figueredo GP, Siebers PO, Owen MR, Reps J, Aickelin U. Comparing stochastic differential equations and agent-based modelling and simulation for early-stage cancer. PLoS One. 2014;9:e95150. doi: 10.1371/journal.pone.0095150. PubMed PMID: 24752131. PubMed PMCID: PMC3994035.
- An G, Mi Q, Dutta-Moscato J, Vodovotz Y. Agent-based models in translational systems biology. Wiley Interdiscip Rev Syst Biol Med. 2009;1:159-71. doi: 10.1002/wsbm.45. PubMed PMID: 20835989. PubMed PMCID: PMC3640333.
- Souza-e-Silva H, Savino W, Feijoo RA, Vasconcelos AT. A cellular automata-based mathematical model for thymocyte development. PLoS One. 2009;4:e8233. doi: 10.1371/journal.pone.0008233. PubMed PMID: 20011042. PubMed PMCID: PMC2784945.
- Monteagudo A, Santos J. Treatment Analysis in a Cancer Stem Cell Context Using a Tumor Growth Model Based on Cellular Automata. PLoS One. 2015;10:e0132306. doi: 10.1371/journal.pone.0132306. PubMed PMID: 26176702. PubMed PMCID: PMC4503350.
- Morris MK, Saez-Rodriguez J, Clarke DC, et al. Training signaling pathway maps to biochemical data with constrained fuzzy logic: quantitative analysis of liver cell responses to inflammatory stimuli. PLoS Comput Biol. 2011;7:e1001099. doi: 10.1371/journal.pcbi.1001099. PubMed PMID: 21408212. PubMed PMCID: PMC3048376.
- Hardy S, Robillard PN. Petri net-based method for the analysis of the dynamics of signal propagation in signaling pathways. Bioinformatics. 2008;24:209-17. doi: 10.1093/bioinformatics/btm560. PubMed PMID: 18033796.
- Ruths D, Muller M, Tseng JT, Nakhleh L, Ram PT. The signaling petri net-based simulator: a non-parametric strategy for characterizing the dynamics of cell-specific signaling networks. PLoS Comput Biol. 2008;4:e1000005. doi: 10.1371/journal.pcbi.1000005. PubMed PMID: 18463702. PubMed PMCID: PMC2265486.
- Liu F, Heiner M, Yang M. Fuzzy Stochastic Petri Nets for Modeling Biological Systems with Uncertain Kinetic Parameters. PLoS One. 2016;11:e0149674. doi: 10.1371/journal.pone.0149674. PubMed PMID: 26910830. PubMed PMCID: PMC4766190.
- Fisher J, Henzinger TA. Executable cell biology. Nat Biotechnol. 2007;25:1239-49. doi: 10.1038/nbt1356. PubMed PMID: 17989686.
- Butcher JC. Numerical methods for ordinary differential equations. New Jersey: John Wiley & Sons; 2016.
- Popova-Zeugmann L. Time petri nets. Time and Petri nets. New York: Springer; 2013. p. 31-137.
- Andreychenko A, Magnin M, Inoue K. Modeling of Resilience Properties in Oscillatory Biological Systems using Parametric Time Petri Nets, Supplementary Information. ArXiv Preprint ArXiv:150606299. 2015.
- Heidary Z, Ghaisari J, Moein S, Naderi M, Gheisari Y. Stochastic Petri net modeling of hypoxia pathway predicts a novel incoherent feed-forward loop controlling sdf-1 expression in acute kidney injury. IEEE Transactions on Nanobioscience. 2016;15:19-26. doi: 10.1109/tnb.2015.2509475.
- Josic K, Lopez JM, Ott W, Shiau L, Bennett MR. Stochastic delay accelerates signaling in gene networks. PLoS Comput Biol. 2011;7:e1002264. doi: 10.1371/journal.pcbi.1002264. PubMed PMID: 22102802. PubMed PMCID: PMC3213172.
- Windhager L. Modeling of dynamic systems with Petri nets and fuzzy logic. Munich: LMU; 2013.
- Bordon J, Moskon M, Zimic N, Mraz M. Fuzzy Logic as a Computational Tool for Quantitative Modelling of Biological Systems with Uncertain Kinetic Data. IEEE/ACM Trans Comput Biol Bioinform. 2015;12:1199-205. doi: 10.1109/TCBB.2015.2424424. PubMed PMID: 26451831.
- Peterson JL. Petri net theory and the modeling of systems. New Jersy; Prentice Hall PTR Upper Saddle River; 1981.
- Huang HS, Liu ZM, Hong DY. Blockage of JNK pathway enhances arsenic trioxide-induced apoptosis in human keratinocytes. Toxicol Appl Pharmacol. 2010;244:234-41. doi: 10.1016/j.taap.2009.12.037. PubMed PMID: 20074581.
- Liu Y, Hock JM, Van Beneden RJ, Li X. Aberrant overexpression of FOXM1 transcription factor plays a critical role in lung carcinogenesis induced by low doses of arsenic. Mol Carcinog. 2014;53:380-91. doi: 10.1002/mc.21989. PubMed PMID: 23255470.
- Liu ZM, Huang HS. Arsenic trioxide phosphorylates c-Fos to transactivate p21(WAF1/CIP1) expression. Toxicol Appl Pharmacol. 2008;233:297-307. doi: 10.1016/j.taap.2008.08.015. PubMed PMID: 18822310.
- Lunghi P, Tabilio A, Lo-Coco F, et al. Arsenic trioxide (ATO) and MEK1 inhibition synergize to induce apoptosis in acute promyelocytic leukemia cells. Leukemia. 2005;19:234-44. doi: 10.1038/sj.leu.2403585. PubMed PMID: 15538402.
- Sato K. Cellular functions regulated by phosphorylation of EGFR on Tyr845. Int J Mol Sci. 2013;14:10761-90. doi: 10.3390/ijms140610761. PubMed PMID: 23702846. PubMed PMCID: PMC3709701.
- Tseng HY, Liu ZM, Huang HS. NADPH oxidase-produced superoxide mediates EGFR transactivation by c-Src in arsenic trioxide-stimulated human keratinocytes. Arch Toxicol. 2012;86:935-45. doi: 10.1007/s00204-012-0856-9. PubMed PMID: 22532027.
- Kryeziu K, Jungwirth U, Hoda MA, Ferk F, et al. Synergistic anticancer activity of arsenic trioxide with erlotinib is based on inhibition of EGFR-mediated DNA double-strand break repair. Mol Cancer Ther. 2013;12:1073-84. doi: 10.1158/1535-7163.MCT-13-0065. PubMed PMID: 23548265.
- Aldridge BB, Saez-Rodriguez J, Muhlich JL, Sorger PK, Lauffenburger DA. Fuzzy logic analysis of kinase pathway crosstalk in TNF/EGF/insulin-induced signaling. PLoS Computational Biology. 2009;5(4):e1000340.
|