- Huang G, Chen H, Dong Y, Luo X, Yu H, Moore Z, et al. Superparamagnetic iron oxide nanoparticles: amplifying ROS stress to improve anticancer drug efficacy. Theranostics. 2013;3:116-26. doi: 10.7150/thno.5411. PubMed PMID: 23423156. PubMed PMCID: PMC3575592.
- Babaei M, Ganjalikhani M. The potential effectiveness of nanoparticles as radio sensitizers for radiotherapy. Bioimpacts. 2014;4:15-20. doi: 10.5681/bi.2014.003. PubMed PMID: 24790894. PubMed PMCID: PMC4005278.
- Khoei S, Mahdavi SR, Fakhimikabir H, Shakeri-Zadeh A, Hashemian A. The role of iron oxide nanoparticles in the radiosensitization of human prostate carcinoma cell line DU145 at megavoltage radiation energies. Int J Radiat Biol. 2014;90:351-6. doi: 10.3109/09553002.2014.888104. PubMed PMID: 24475739.
- Su XY, Liu PD, Wu H, Gu N. Enhancement of radiosensitization by metal-based nanoparticles in cancer radiation therapy. Cancer Biol Med. 2014;11:86-91. doi: 10.7497/j.issn.2095-3941.2014.02.003. PubMed PMID: 25009750. PubMed PMCID: PMC4069802.
- Retif P, Pinel S, Toussaint M, Frochot C, Chouikrat R, Bastogne T, et al. Nanoparticles for Radiation Therapy Enhancement: the Key Parameters. Theranostics. 2015;5:1030-44. doi: 10.7150/thno.11642. PubMed PMID: 26155318. PubMed PMCID: PMC4493540.
- Haume K, Rosa S, Grellet S, Smialek MA, Butterworth KT, Solov’yov AV, et al. Gold nanoparticles for cancer radiotherapy: a review. Cancer Nanotechnol. 2016;7:8. doi: 10.1186/s12645-016-0021-x. PubMed PMID: 27867425. PubMed PMCID: PMC5095165.
- Delaney GP, Barton MB. Evidence-based estimates of the demand for radiotherapy. Clin Oncol (R Coll Radiol). 2015;27:70-6. doi: 10.1016/j.clon.2014.10.005. PubMed PMID: 25455408.
- Eriksson D, Stigbrand T. Radiation-induced cell death mechanisms. Tumour Biol. 2010;31:363-72. doi: 10.1007/s13277-010-0042-8. PubMed PMID: 20490962.
- Amelio D, Amichetti M. Radiation therapy for the treatment of recurrent glioblastoma: an overview. Cancers (Basel). 2012;4:257-80. doi: 10.3390/cancers4010257. PubMed PMID: 24213239. PubMed PMCID: PMC3712688.
- Raizer J, Parsa A. Current understanding and treatment of gliomas: Springer; 2015.
- Huynh GH, Deen DF, Szoka Jr FC. Barriers to carrier mediated drug and gene delivery to brain tumors. J Control Release. 2006;110:236-59. doi: 10.1016/j.jconrel.2005.09.053. PubMed PMID: 16318895.
- Invernici G, Cristini S, Alessandri G, Navone SE, Canzi L, Tavian D, et al. Nanotechnology advances in brain tumors: the state of the art. Recent Pat Anticancer Drug Discov. 2011;6:58-69. PubMed PMID: 21110824.
- Rozhkova EA. Nanoscale materials for tackling brain cancer: recent progress and outlook. Adv Mater. 2011;23:H136-50. doi: 10.1002/adma.201004714. PubMed PMID: 21506172.
- Ling Y, Wei K, Zou F, Zhong S. Temozolomide loaded PLGA-based superparamagnetic nanoparticles for magnetic resonance imaging and treatment of malignant glioma. Int J Pharm. 2012;430:266-75. doi: 10.1016/j.ijpharm.2012.03.047. PubMed PMID: 22486964.
- Wen PY, Kesari S. Malignant gliomas in adults. N Engl J Med. 2008;359:492-507. doi: 10.1056/NEJMra0708126. PubMed PMID: 18669428.
- Ostrom QT, Gittleman H, Liao P, Rouse C, Chen Y, Dowling J, et al. CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2007-2011. Neuro Oncol. 2014;16 Suppl 4:iv1-63. doi: 10.1093/neuonc/nou223. PubMed PMID: 25304271. PubMed PMCID: PMC4193675.
- Fang C, Wang K, Stephen ZR, Mu Q, Kievit FM, Chiu DT, et al. Temozolomide nanoparticles for targeted glioblastoma therapy. ACS Appl Mater Interfaces. 2015;7:6674-82. doi: 10.1021/am5092165. PubMed PMID: 25751368. PubMed PMCID: PMC4637162.
- Walker MD, Strike TA, Sheline GE. An analysis of dose-effect relationship in the radiotherapy of malignant gliomas. Int J Radiat Oncol Biol Phys. 1979;5:1725-31. PubMed PMID: 231022.
- Ruben JD, Dally M, Bailey M, Smith R, McLean CA, Fedele P. Cerebral radiation necrosis: incidence, outcomes, and risk factors with emphasis on radiation parameters and chemotherapy. Int J Radiat Oncol Biol Phys. 2006;65:499-508. doi: 10.1016/j.ijrobp.2005.12.002. PubMed PMID: 16517093.
- Lu AH, Salabas EL, Schuth F. Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew Chem Int Ed Engl. 2007;46:1222-44. doi: 10.1002/anie.200602866. PubMed PMID: 17278160.
- Kanwar JR, Mahidhara G, Kanwar RK. Recent advances in nanoneurology for drug delivery to the brain. Current nanoscience. 2009;5:441-8.
- Pankhurst QA, Connolly J, Jones S, Dobson J. Applications of magnetic nanoparticles in biomedicine. Journal of physics D: Applied physics. 2003;36:R167.
- Chertok B, Moffat BA, David AE, Yu F, Bergemann C, Ross BD, et al. Iron oxide nanoparticles as a drug delivery vehicle for MRI monitored magnetic targeting of brain tumors. Biomaterials. 2008;29:487-96. doi: 10.1016/j.biomaterials.2007.08.050. PubMed PMID: 17964647. PubMed PMCID: PMC2761681.
- Hadjipanayis CG, Machaidze R, Kaluzova M, Wang L, Schuette AJ, Chen H, et al. EGFRvIII antibody-conjugated iron oxide nanoparticles for magnetic resonance imaging-guided convection-enhanced delivery and targeted therapy of glioblastoma. Cancer Res. 2010;70:6303-12. doi: 10.1158/0008-5472.CAN-10-1022. PubMed PMID: 20647323. PubMed PMCID: PMC2912981.
- Braun S, Oppermann H, Mueller A, Renner C, Hovhannisyan A, Baran-Schmidt R, et al. Hedgehog signaling in glioblastoma multiforme. Cancer Biol Ther. 2012;13:487-95. doi: 10.4161/cbt.19591. PubMed PMID: 22406999.
- Huang FK, Chen WC, Lai SF, Liu CJ, Wang CL, Wang CH, et al. Enhancement of irradiation effects on cancer cells by cross-linked dextran-coated iron oxide (CLIO) nanoparticles. Phys Med Biol. 2010;55:469-82. doi: 10.1088/0031-9155/55/2/009. PubMed PMID: 20023329.
- Klein S, Sommer A, Distel LV, Neuhuber W, Kryschi C. Superparamagnetic iron oxide nanoparticles as radiosensitizer via enhanced reactive oxygen species formation. Biochem Biophys Res Commun. 2012;425:393-7. doi: 10.1016/j.bbrc.2012.07.108. PubMed PMID: 22842461.
- Roeske JC, Nunez L, Hoggarth M, Labay E, Weichselbaum RR. Characterization of the theorectical radiation dose enhancement from nanoparticles. Technol Cancer Res Treat. 2007;6:395-401. doi: 10.1177/153303460700600504. PubMed PMID: 17877427.
- Veiseh O, Sun C, Gunn J, Kohler N, Gabikian P, Lee D, et al. Optical and MRI multifunctional nanoprobe for targeting gliomas. Nano Lett. 2005;5:1003-8. doi: 10.1021/nl0502569. PubMed PMID: 15943433.
- Hu F, Neoh KG, Cen L, Kang ET. Cellular response to magnetic nanoparticles “PEGylated” via surface-initiated atom transfer radical polymerization. Biomacromolecules. 2006;7:809-16. doi: 10.1021/bm050870e. PubMed PMID: 16529418.
- Lutz JF, Stiller S, Hoth A, Kaufner L, Pison U, Cartier R. One-pot synthesis of pegylated ultrasmall iron-oxide nanoparticles and their in vivo evaluation as magnetic resonance imaging contrast agents. Biomacromolecules. 2006;7:3132-8. doi: 10.1021/bm0607527. PubMed PMID: 17096542.
- Frey H. Hyperbranched polyglycerols (Synthesis and Applications). Encyclopedia of Polymeric Nanomaterials. 2015:977-80.
- Saucier-Sawyer JK, Deng Y, Seo YE, Cheng CJ, Zhang J, Quijano E, et al. Systemic delivery of blood-brain barrier-targeted polymeric nanoparticles enhances delivery to brain tissue. J Drug Target. 2015;23:736-49. doi: 10.3109/1061186X.2015.1065833. PubMed PMID: 26453169. PubMed PMCID: PMC4860350.
- Deng Y, Saucier-Sawyer JK, Hoimes CJ, Zhang J, Seo YE, Andrejecsk JW, et al. The effect of hyperbranched polyglycerol coatings on drug delivery using degradable polymer nanoparticles. Biomaterials. 2014;35:6595-602. doi: 10.1016/j.biomaterials.2014.04.038. PubMed PMID: 24816286. PubMed PMCID: PMC4062180.
- Maity D, Choo S-G, Yi J, Ding J, Xue JM. Synthesis of magnetite nanoparticles via a solvent-free thermal decomposition route. Journal of Magnetism and Magnetic Materials. 2009;321:1256-9.
- Zhao L, Chano T, Morikawa S, Saito Y, Shiino A, Shimizu S, et al. Hyperbranched polyglycerol-grafted superparamagnetic iron oxide nanoparticles: synthesis, characterization, functionalization, size separation, magnetic properties and biological applications. Advanced Functional Materials. 2012;22:5107-17.
- Indira T, Lakshmi P. Magnetic nanoparticles—a review. Int J Pharm Sci Nanotechnol. 2010;3:1035-42.
- Mody VV, Cox A, Shah S, Singh A, Bevins W, Parihar H. Magnetic nanoparticle drug delivery systems for targeting tumor. Applied Nanoscience. 2014;4:385-92.
- Han L, Shi S, Gong T, Zhang Z, Sun X. Cancer stem cells: therapeutic implications and perspectives in cancer therapy. Acta Pharmaceutica Sinica B. 2013;3:65-75.
- Kratzke RA, Kramer BS. Evaluation of in vitro chemosensitivity using human lung cancer cell lines. J Cell Biochem Suppl. 1996;24:160-4. PubMed PMID: 8806098.
- Franken NA, Rodermond HM, Stap J, Haveman J, Van Bree C. Clonogenic assay of cells in vitro. Nat Protoc. 2006;1:2315-9. doi: 10.1038/nprot.2006.339. PubMed PMID: 17406473.
- Buch K, Peters T, Nawroth T, Sänger M, Schmidberger H, Langguth P. Determination of cell survival after irradiation via clonogenic assay versus multiple MTT Assay-A comparative study. Radiation oncology. 2012;7:1.
- Chou T, Martin N. CompuSyn software for drug combinations and for general dose-effect analysis and user’s guide. Paramus: ComboSyn Inc; 2007.
- Tartaj P, Serna CJ. Synthesis of monodisperse superparamagnetic Fe/silica nanospherical composites. J Am Chem Soc. 2003;125:15754-5.
- Marinin A. Synthesis and characterization of superparamagnetic iron oxide nanoparticles coated with silica. School of Information and Communication Technology Royal Institute of Technology: Stockholm; 2012.
- Keshavarzi E, Ghaeb Y, Rouhani SF. The magnetic properties of Fe3O4 nanoparticale with different Coats and hydrodynamic diameters. c2010. Avilable From: http://www.civilica.com/Paper-ISPTC12-ISPTC12_121.html.
- Wang L, Neoh K, Kang E, Shuter B, Wang SC. Superparamagnetic hyperbranched polyglycerol-grafted Fe3O4 nanoparticles as a novel magnetic resonance imaging contrast agent: an in vitro assessment. Advanced Functional Materials. 2009;19:2615-22.
- Ankamwar B, Lai T-C, Huang J-H, Liu R-S, Hsiao M, Chen C-H, et al. Biocompatibility of Fe3O4 nanoparticles evaluated by in vitro cytotoxicity assays using normal, glia and breast cancer cells. Nanotechnology. 2010;21:075102.
- Choi JY, Lee SH, Na HB, An K, Hyeon T, Seo TS. In vitro cytotoxicity screening of water-dispersible metal oxide nanoparticles in human cell lines. Bioprocess Biosyst Eng. 2010;33:21-30. doi: 10.1007/s00449-009-0354-5. PubMed PMID: 19636592.
- Mahmoudi M, Hofmann H, Rothen-Rutishauser B, Petri-Fink A. Assessing the in vitro and in vivo toxicity of superparamagnetic iron oxide nanoparticles. Chem Rev. 2012;112:2323-38. doi: 10.1021/cr2002596. PubMed PMID: 22216932.
- Harvey KA, Xu Z, Saaddatzadeh MR, Wang H, Pollok K, Cohen-Gadol AA, et al. Enhanced anticancer properties of lomustine in conjunction with docosahexaenoic acid in glioblastoma cell lines. J Neurosurg. 2015;122:547-56. doi: 10.3171/2014.10.JNS14759. PubMed PMID: 25526274.
- Sutradhar KB, Amin ML. Nanotechnology in cancer drug delivery and selective targeting. ISRN Nanotechnology. 2014;2014.
- Saatchi K, Gelder N, Gershkovich P, Sivak O, Wasan KM, Kainthan RK, et al. Long-circulating non-toxic blood pool imaging agent based on hyperbranched polyglycerols. Int J Pharm. 2012;422:418-27. doi: 10.1016/j.ijpharm.2011.10.036. PubMed PMID: 22044540.
- Tubiana M, Introduction to radiobiology. Florida: CRC Press; 2005.
- Hall EJ, Giaccia AJ. Radiobiology for the Radiologist. Philadelphia: Lippincott Williams & Wilkins; 2006.
- Ott M, Gogvadze V, Orrenius S, Zhivotovsky B. Mitochondria, oxidative stress and cell death. Apoptosis. 2007;12:913-22. doi: 10.1007/s10495-007-0756-2. PubMed PMID: 17453160.
- Jia HY, Liu Y, Zhang XJ, Han L, Du LB, Tian Q, et al. Potential oxidative stress of gold nanoparticles by induced-NO releasing in serum. J Am Chem Soc. 2009;131:40-1. doi: 10.1021/ja808033w. PubMed PMID: 1907265.
- Klein S, Dell’Arciprete ML, Wegmann M, Distel LV, Neuhuber W, Gonzalez MC, et al. Oxidized silicon nanoparticles for radiosensitization of cancer and tissue cells. Biochem Biophys Res Commun. 2013;434:217-22. doi: 10.1016/j.bbrc.2013.03.042. PubMed PMID: 23535374.
- Misawa M, Takahashi J. Generation of reactive oxygen species induced by gold nanoparticles under x-ray and UV Irradiations. Nanomedicine. 2011;7:604-14. doi: 10.1016/j.nano.2011.01.014. PubMed PMID: 21333754.
- Gara PMD, Garabano NI, Portoles MJL, Moreno MS, Dodat D, Casas OR, et al. ROS enhancement by silicon nanoparticles in X-ray irradiated aqueous suspensions and in glioma C6 cells. J Nanopart Res. 2012;14:741.
- Lehnert S. Radiosensitizers and Radiochemotherapy in the Treatment of Cancer. New York: CRC Press; 2014.
|