تعداد نشریات | 20 |
تعداد شمارهها | 1,149 |
تعداد مقالات | 10,518 |
تعداد مشاهده مقاله | 45,423,619 |
تعداد دریافت فایل اصل مقاله | 11,296,571 |
Effect of Preheating and Precooling on the Flexural Strength and Modulus of Elasticity of Nanohybrid and Silorane-based Composite | ||
Journal of Dentistry | ||
مقاله 1، دوره 16، Supplement 3- September 2015، آذر 2015، صفحه 224-229 اصل مقاله (305.42 K) | ||
نوع مقاله: Original Article | ||
نویسندگان | ||
Farahnaz Sharafeddin1؛ Mehran Motamedi* 2؛ Zahra Fattah3 | ||
1Biomaterial Research Center, Dept. of Operative Dentistry, School of Dentistry, Shiraz University of Medical Science, Shiraz, Iran. | ||
2Dept. of Operative Dentistry, School of Dentistry, Shiraz University of Medical Science, Shiraz, Iran. | ||
3Post Graduate Student, Student Research Committee, Dept. of Operative Dentistry, School of Dentistry, Shiraz University of Medical Science, Shiraz, Iran. | ||
چکیده | ||
Statement of the Problem: Composite resin may be used in different temperatures; it is crucial to determine the effect of temperature on mechanical properties of nanohybrid and silorane-based composite.Purpose: This in vitro study compared the flexural strength and modulus of elasticity of nanohybrid and silorane-based resin composite, at 4˚C, room temperature (25˚C), and 45˚C.Materials and Method: In this experimental study, 60 specimens were prepared in a metal split mold (2×2×25mm). Two different resin composites, Filtek Z250 XT (3M/ ESPE) and Filtek P90 (3M/ESPE), were evaluated. The material were inserted into split molds at room temperature, 4˚C or 45˚C and cured with LED (1200 mW/cm2) for 20 seconds in four points (n=10). Then, a three-point bending test was performed using a universal testing machine at a crosshead speed of 0.5 mm/min for measuring the flexural strength and flexural modulus of samples. The data were analyzed by the two-way ANOVA and Tukey test (p< 0.05).Results: The mean highest flexural strength was observed at 45˚C, showing statistically significant difference with flexural strength at 4˚C (p= 0.0001) and 25˚C (p= 0.003) regardless of the type of resin composite. The flexural modulus at 45˚C was highest, showing the statistically significant difference with flexural modulus at 4˚C (p= 0.0001) and 25˚C (p= 0.002). The flexural modulus was statistically different between nanohybrid and silorane-based resin composite (p= 0.01) in 25˚C and 45˚C, but there were no statistically significant differences between flexural strength of Filtek Z250 XT and Filtek P90 regardless of the temperatures (p= 0.062).Conclusion: Preheating the resin composite at 45˚C improves flexural strength and modulus of nanohybrid and silorane-based resin composite. However, flexural strength and modulus of the tested materials were not affected by precooling. The flexural modulus of nanohybrid resin composite was significantly higher than silorane-based resin composite in 25˚C and 45˚C temperatures. | ||
آمار تعداد مشاهده مقاله: 1,369 تعداد دریافت فایل اصل مقاله: 477 |