- Electrophysiology APTASoC. Electrotherapeutic terminology in physical therapy: American Physical Therapy Association; 2000.
- Moran F, Leonard T, Hawthorne S, Hughes CM, McCrum-Gardner E, Johnson MI, et al. Hypoalgesia in response to transcutaneous electrical nerve stimulation (TENS) depends on stimulation intensity. J Pain. 2011;12:929-35. doi.org/10.1016/j.jpain.2011.02.352. PubMed PMID: 21481649.
- Johnson MI, Tabasam G. An investigation into the analgesic effects of interferential currents and transcutaneous electrical nerve stimulation on experimentally induced ischemic pain in otherwise pain-free volunteers. Phys Ther. 2003;83:208-23. PubMed PMID: 12620086.
- Robb K, Oxberry SG, Bennett MI, Johnson MI, Simpson KH, Searle RD. A cochrane systematic review of transcutaneous electrical nerve stimulation for cancer pain. J Pain Symptom Manage. 2009;37:746-53. doi.org/10.1016/j.jpainsymman.2008.03.022. PubMed PMID: 18790600.
- Kara M, Ozcakar L, Gokcay D, Ozcelik E, Yorubulut M, Guneri S, et al. Quantification of the effects of transcutaneous electrical nerve stimulation with functional magnetic resonance imaging: a double-blind randomized placebo-controlled study. Arch Phys Med Rehabil. 2010;91:1160-5. doi.org/10.1016/j.apmr.2010.04.023. PubMed PMID: 20684895.
- Silva JG, Santana CG, Inocencio KR, Orsini M, Machado S, Bergmann A. Electrocortical Analysis of Patients with Intercostobrachial Pain Treated with TENS after Breast Cancer Surgery. J Phys Ther Sci. 2014;26:349-53. doi.org/10.1589/jpts.26.349. PubMed PMID: 24707082. PubMed PMCID: 3976001.
- Timofeeva MA, Ar’kov VV, Andreev RA, Trushkin EV, Tonevitsky AG. Changes in parameters of laser-induced potentials after transcutaneous electroneurostimulation. Bull Exp Biol Med. 2011;150:479-80. doi.org/10.1007/s10517-011-1173-7. PubMed PMID: 22268048.
- Johnson MI, Walsh DM. Pain: continued uncertainty of TENS’ effectiveness for pain relief. Nat Rev Rheumatol. 2010;6:314-6. doi.org/10.1038/nrrheum.2010.77. PubMed PMID: 20520646.
- Hoshiyama M, Kakigi R. After-effect of transcutaneous electrical nerve stimulation (TENS) on pain-related evoked potentials and magnetic fields in normal subjects. Clin Neurophysiol. 2000;111:717-24. doi.org/10.1016/S1388-2457(99)00299-0. PubMed PMID: 10727923.
- Vassal F, Creac’h C, Convers P, Laurent B, Garcia-Larrea L, Peyron R. Modulation of laser-evoked potentials and pain perception by transcutaneous electrical nerve stimulation (TENS): a placebo-controlled study in healthy volunteers. Clin Neurophysiol. 2013;124:1861-7. doi.org/10.1016/j.clinph.2013.04.001. PubMed PMID: 23639375.
- de Tommaso M, Fiore P, Camporeale A, Guido M, Libro G, Losito L, et al. High and low frequency transcutaneous electrical nerve stimulation inhibits nociceptive responses induced by CO 2 laser stimulation in humans. Neuroscience letters. 2003;342:17-20. doi.org/10.1016/S0304-3940(03)00219-2.
- Jensen MP, Hakimian S, Sherlin LH, Fregni F. New insights into neuromodulatory approaches for the treatment of pain. J Pain. 2008;9:193-9. doi.org/10.1016/j.jpain.2007.11.003. PubMed PMID: 18096437.
- Kakigi R, Inui K, Tamura Y. Electrophysiological studies on human pain perception. Clin Neurophysiol. 2005;116:743-63. doi.org/10.1016/j.clinph.2004.11.016. PubMed PMID: 15792883.
- Williams JD, Gruzelier JH. Differentiation of hypnosis and relaxation by analysis of narrow band theta and alpha frequencies. Int J Clin Exp Hypn. 2001;49:185-206. doi.org/10.1080/00207140108410070. PubMed PMID: 11430154.
- Ma J, Wang S, Raubertas R, Svetnik V. Statistical methods to estimate treatment effects from multichannel electroencephalography (EEG) data in clinical trials. J Neurosci Methods. 2010;190:248-57. doi.org/10.1016/j.jneumeth.2010.05.013. PubMed PMID: 20580744.
- Tinazzi M, Zarattini S, Valeriani M, Romito S, Farina S, Moretto G, et al. Long-lasting modulation of human motor cortex following prolonged transcutaneous electrical nerve stimulation (TENS) of forearm muscles: evidence of reciprocal inhibition and facilitation. Exp Brain Res. 2005;161:457-64. doi.org/10.1007/s00221-004-2091-y. PubMed PMID: 15551083.
- Terman G, Bonica J. Spinal mechanisms and their modulation. Bonica’s Management of Pain. 3rd ed. Baltimore, MD: Lippincott Williams & Wilkins; 2001. p. 73-152.
- Lorenz J, Garcia-Larrea L. Contribution of attentional and cognitive factors to laser evoked brain potentials. Neurophysiol Clin. 2003;33:293-301. doi.org/10.1016/j.neucli.2003.10.004. PubMed PMID: 14678843.
- Chen AC. EEG/MEG brain mapping of human pain: recent advances. International Congress Series; 2002: Elsevier.
- Chen AC. Human brain measures of clinical pain: a review. I. Topographic mappings. Pain. 1993;54:115-32. doi.org/10.1016/0304-3959(93)90200-9. PubMed PMID: 8233525.
- Posner J. A modified submaximal effort tourniquet test for evaluation of analgesics in healthy volunteers. Pain. 1984;19:143-51. doi.org/10.1016/0304-3959(84)90834-0. PubMed PMID: 6462726.
- Mima T, Oga T, Rothwell J, Satow T, Yamamoto J, Toma K, et al. Short-term high-frequency transcutaneous electrical nerve stimulation decreases human motor cortex excitability. Neurosci Lett. 2004;355:85-8. doi.org/10.1016/j.neulet.2003.10.045. PubMed PMID: 14729241.
- Bushnell M, Apkarian A. Representation of pain in the brain. Wall and Melzack’s Textbook of Pain. 5th edition. London: Elsevier; 2006. p. 107-124.
- Craig AD. Interoception: the sense of the physiological condition of the body. Curr Opin Neurobiol. 2003;13:500-5. doi.org/10.1016/S0959-4388(03)00090-4. PubMed PMID: 12965300.
- Mouraux A, Guerit J-M, Plaghki L. Non-phase locked electroencephalogram (EEG) responses to CO2 laser skin stimulations may reflect central interactions between A∂-and C-fibre afferent volleys. Clinical neurophysiology. 2003;114:710-22. doi.org/10.1016/S1388-2457(03)00027-0.
- Ploner M, Gross J, Timmermann L, Pollok B, Schnitzler A. Pain suppresses spontaneous brain rhythms. Cereb Cortex. 2006;16:537-40. doi.org/10.1093/cercor/bhj001. PubMed PMID: 16033927.
- Bromm B, Lorenz J. Neurophysiological evaluation of pain. Electroencephalogr Clin Neurophysiol. 1998;107:227-53. doi.org/10.1016/S0013-4694(98)00075-3. PubMed PMID: 9872441.
- Constant I, Sabourdin N. The EEG signal: a window on the cortical brain activity. Paediatr Anaesth. 2012;22:539-52. doi.org/10.1111/j.1460-9592.2012.03883.x. PubMed PMID: 22594406.
- Martinovic J, Busch NA. High frequency oscillations as a correlate of visual perception. Int J Psychophysiol. 2011;79:32-8. doi.org/10.1016/j.ijpsycho.2010.07.004. PubMed PMID: 20654659.
- Valentini E, Betti V, Hu L, Aglioti SM. Hypnotic modulation of pain perception and of brain activity triggered by nociceptive laser stimuli. Cortex. 2013;49:446-62. doi.org/10.1016/j.cortex.2012.02.005. PubMed PMID: 22464451.
- Zhang ZG, Hu L, Hung YS, Mouraux A, Iannetti GD. Gamma-band oscillations in the primary somatosensory cortex--a direct and obligatory correlate of subjective pain intensity. J Neurosci. 2012;32:7429-38. doi.org/10.1523/JNEUROSCI.5877-11.2012. PubMed PMID: 22649223.
- Chen AC, Herrmann CS. Perception of pain coincides with the spatial expansion of electroencephalographic dynamics in human subjects. Neurosci Lett. 2001;297:183-6. doi.org/10.1016/S0304-3940(00)01696-7. PubMed PMID: 11137758.
- Croft RJ, Williams JD, Haenschel C, Gruzelier JH. Pain perception, hypnosis and 40 Hz oscillations. Int J Psychophysiol. 2002;46:101-8. doi.org/10.1016/S0167-8760(02)00118-6. PubMed PMID: 12433387.
- Ohara S, Crone NE, Weiss N, Lenz FA. Analysis of synchrony demonstrates ‘pain networks’ defined by rapidly switching, task-specific, functional connectivity between pain-related cortical structures. Pain. 2006;123:244-53. doi.org/10.1016/j.pain.2006.02.012. PubMed PMID: 16563627.
- Nir RR, Sinai A, Moont R, Harari E, Yarnitsky D. Tonic pain and continuous EEG: prediction of subjective pain perception by alpha-1 power during stimulation and at rest. Clin Neurophysiol. 2012;123:605-12. doi.org/10.1016/j.clinph.2011.08.006. PubMed PMID: 21889398.
- Bae YH, Lee SM. Analgesic effects of transcutaneous electrical nerve stimulation and interferential current on experimental ischemic pain models: frequencies of 50 hz and 100 hz. J Phys Ther Sci. 2014;26:1945-8. doi.org/10.1589/jpts.26.1945. PubMed PMID: 25540504. PubMed PMCID: 4273064.
- Marchand S, Li J, Charest J. Effects of caffeine on analgesia from transcutaneous electrical nerve stimulation. N Engl J Med. 1995;333:325-6. doi.org/10.1056/NEJM199508033330521. PubMed PMID: 7596392.
- Hasan S. Comparative Study: Analgesic effect of Al-TENS in variation of treatment time on experimentally induced ischaemic pain in healthy young adult. Indian Journal of Physiotherapy and Occupational Therapy. 2013;7:250. doi.org/10.5958/j.0973-5674.7.2.051.
- Neal MJ, Murray BR. The analgesic effect of anaesthetic mixtures. The effect of nitrous oxide with trichlorethylene or halothane on experimental ischaemic pain. Guys Hosp Rep. 1966;115:19-26. PubMed PMID: 5904624.
- Sacchetti G, Lampugnani R, Battistini C, Mandelli V. Response of pathological ischaemic muscle pain to analgesics. Br J Clin Pharmacol. 1980;9:165-9. doi.org/10.1111/j.1365-2125.1980.tb05828.x. PubMed PMID: 7356905. PubMed PMCID: 1429853.
- Handwerker HO, Kobal G. Psychophysiology of experimentally induced pain. Physiol Rev. 1993;73:639-71. doi.org/10.1152/physrev.1993.73.3.639. PubMed PMID: 8332641.
- Moore PA, Duncan GH, Scott DS, Gregg JM, Ghia JN. The submaximal effort tourniquet test: its use in evaluating experimental and chronic pain. Pain. 1979;6:375-82. doi.org/10.1016/0304-3959(79)90055-1. PubMed PMID: 460938.
- Chen CC, Johnson MI. Differential frequency effects of strong nonpainful transcutaneous electrical nerve stimulation on experimentally induced ischemic pain in healthy human participants. Clin J Pain. 2011;27:434-41. doi.org/10.1097/AJP.0b013e318208c926. PubMed PMID: 21415722.
- Johnson MI, Tabasam G. A single-blind placebo-controlled investigation into the analgesic effects of interferential currents on experimentally induced ischaemic pain in healthy subjects. Clin Physiol Funct Imaging. 2002;22:187-96. doi.org/10.1046/j.1475-097X.2002.00416.x. PubMed PMID: 12076344.
- Droste C, Greenlee MW. Two separate components of pain produced by the submaximal effort tourniquet technique. Pain. 1985;23:95-6. doi.org/10.1016/0304-3959(85)90234-9. PubMed PMID: 4058930.
- Pertovaara A, Nurmikko T, Pontinen PJ. Two separate components of pain produced by the submaximal effort tourniquet test. Pain. 1984;20:53-8. doi.org/10.1016/0304-3959(84)90810-8. PubMed PMID: 6493789.
- Reinert A, Treede R, Bromm B. The pain inhibiting pain effect: an electrophysiological study in humans. Brain Res. 2000;862:103-10. doi.org/10.1016/S0006-8993(00)02077-1. PubMed PMID: 10799674.
- Guo-Sheng Y, Jiang W, Bin D, Xi-Le W, Chun-Xiao H. Modulation of electroencephalograph activity by manual acupuncture stimulation in healthy subjects: An autoregressive spectral analysis. Chinese Physics B. 2013;22:028703. doi.org/10.1088/1674-1056/22/2/028703.
- Chang PF, Arendt-Nielsen L, Graven-Nielsen T, Chen AC. Psychophysical and EEG responses to repeated experimental muscle pain in humans: pain intensity encodes EEG activity. Brain Res Bull. 2003;59:533-43. doi.org/10.1016/S0361-9230(02)00950-4. PubMed PMID: 12576151.
- Bertrand O, Tallon-Baudry C. Oscillatory gamma activity in humans: a possible role for object representation. Int J Psychophysiol. 2000;38:211-23. doi.org/10.1016/S0167-8760(00)00166-5. PubMed PMID: 11102663.
- Tallon-Baudry C, Bertrand O. Oscillatory gamma activity in humans and its role in object representation. Trends Cogn Sci. 1999;3:151-62. doi.org/10.1016/S1364-6613(99)01299-1. PubMed PMID: 10322469.
- Kaiser J, Hertrich I, Ackermann H, Lutzenberger W. Gamma-band activity over early sensory areas predicts detection of changes in audiovisual speech stimuli. Neuroimage. 2006;30:1376-82. doi.org/10.1016/j.neuroimage.2005.10.042. PubMed PMID: 16364660.
- Kaiser J, Lutzenberger W. Induced gamma-band activity and human brain function. Neuroscientist. 2003;9:475-84. doi.org/10.1177/1073858403259137. PubMed PMID: 14678580.
- Burgess AP, Ali L. Functional connectivity of gamma EEG activity is modulated at low frequency during conscious recollection. Int J Psychophysiol. 2002;46:91-100. doi.org/10.1016/S0167-8760(02)00108-3. PubMed PMID: 12433386.
- Shibata T, Shimoyama I, Ito T, Abla D, Iwasa H, Koseki K, et al. Attention changes the peak latency of the visual gamma-band oscillation of the EEG. Neuroreport. 1999;10:1167-70. doi.org/10.1097/00001756-199904260-00002. PubMed PMID: 10363918.
- Sokolov A, Lutzenberger W, Pavlova M, Preissl H, Braun C, Birbaumer N. Gamma-band MEG activity to coherent motion depends on task-driven attention. Neuroreport. 1999;10:1997-2000. doi.org/10.1097/00001756-199907130-00001. PubMed PMID: 10424663.
- De Pascalis V, Cacace I, Massicolle F. Perception and modulation of pain in waking and hypnosis: functional significance of phase-ordered gamma oscillations. Pain. 2004;112:27-36. doi.org/10.1016/j.pain.2004.07.003. PubMed PMID: 15494182.
- De Pascalis V, Cacace I. Pain perception, obstructive imagery and phase-ordered gamma oscillations. Int J Psychophysiol. 2005;56:157-69. doi.org/10.1016/j.ijpsycho.2004.11.004. PubMed PMID: 15804450.
- Hauck M, Lorenz J, Engel AK. Attention to painful stimulation enhances gamma-band activity and synchronization in human sensorimotor cortex. J Neurosci. 2007;27:9270-7. doi.org/10.1523/JNEUROSCI.2283-07.2007. PubMed PMID: 17728441.
- Gross J, Schnitzler A, Timmermann L, Ploner M. Gamma oscillations in human primary somatosensory cortex reflect pain perception. PLoS Biol. 2007;5:e133. doi.org/10.1371/journal.pbio.0050133. PubMed PMID: 17456008. PubMed PMCID: 1854914.
- Hauck M, Domnick C, Lorenz J, Gerloff C, Engel AK. Top-down and bottom-up modulation of pain-induced oscillations. Front Hum Neurosci. 2015;9:375. doi.org/10.3389/fnhum.2015.00375. PubMed PMID: 26190991. PubMed PMCID: 4488623.
- Schulz E, May ES, Postorino M, Tiemann L, Nickel MM, Witkovsky V, et al. Prefrontal Gamma Oscillations Encode Tonic Pain in Humans. Cereb Cortex. 2015;25:4407-14. doi.org/10.1093/cercor/bhv043. PubMed PMID: 25754338. PubMed PMCID: 4816790.
- Jensen MP, Sherlin LH, Askew RL, Fregni F, Witkop G, Gianas A, et al. Effects of non-pharmacological pain treatments on brain states. Clin Neurophysiol. 2013;124:2016-24. doi.org/10.1016/j.clinph.2013.04.009. PubMed PMID: 23706958. PubMed PMCID: 3759647.
- Farrar JT, Young JP, Jr., LaMoreaux L, Werth JL, Poole RM. Clinical importance of changes in chronic pain intensity measured on an 11-point numerical pain rating scale. Pain. 2001;94:149-58. doi.org/10.1016/S0304-3959(01)00349-9. PubMed PMID: 11690728.
- Dworkin RH, Turk DC, Wyrwich KW, Beaton D, Cleeland CS, Farrar JT, et al. Interpreting the clinical importance of treatment outcomes in chronic pain clinical trials: IMMPACT recommendations. J Pain. 2008;9:105-21. doi.org/10.1016/j.jpain.2007.09.005. PubMed PMID: 18055266.
- Maeda Y, Lisi TL, Vance CG, Sluka KA. Release of GABA and activation of GABA(A) in the spinal cord mediates the effects of TENS in rats. Brain Res. 2007;1136:43-50. doi.org/10.1016/j.brainres.2006.11.061. PubMed PMID: 17234163. PubMed PMCID: 2746639.
- Sluka KA, Vance CG, Lisi TL. High-frequency, but not low-frequency, transcutaneous electrical nerve stimulation reduces aspartate and glutamate release in the spinal cord dorsal horn. J Neurochem. 2005;95:1794-801. doi.org/10.1111/j.1471-4159.2005.03511.x. PubMed PMID: 16236028.
- Leonard G, Goffaux P, Marchand S. Deciphering the role of endogenous opioids in high-frequency TENS using low and high doses of naloxone. Pain. 2010;151:215-9. doi.org/10.1016/j.pain.2010.07.012. PubMed PMID: 20728275.
- DeSantana J, Sluka K, editors. Antinociceptive effect of transcutaneous electric nerve stimulation (TENS) is mediated by ventrolateral periaqueductal grey (vlPAG). XII World Congress in Pain; 2008.
- DeSantana JM, Walsh DM, Vance C, Rakel BA, Sluka KA. Effectiveness of transcutaneous electrical nerve stimulation for treatment of hyperalgesia and pain. Curr Rheumatol Rep. 2008;10:492-9. doi.org/10.1007/s11926-008-0080-z. PubMed PMID: 19007541. PubMed PMCID: 2746624.
|