- Starkey RL, Halvorson HO. Studies on the transformations of iron in nature Ii, Concerning the importance of microörganisms in the solution and precipitation of iron. Soil Science. 1927; 24(6):381â402. doi: 10.1097/00010694-192712000-00001
- Hedrich S, Schlomann M, Johnson DB. The iron-oxidizing proteobacteria. Microbiology. 2011; 157(6):1551â64. doi: 10.1099/mic.0.045344-0
- Erbs M, Spain J. Microbial iron metabolism in natural environments. Microb Divers. 2002; 1-19.
- Luef B, Fakra SC, Csencsits R, Wrighton KC, Williams KH, Wilkins MJ, et al. Iron-reducing bacteria accumulate ferric oxyhydroxide nanoparticle aggregates that may support planktonic growth. ISME Journal. 2012; 7(2):338â50. doi: 10.1038/ismej.2012.103
- Kerin EJ, Gilmour CC, Roden E, Suzuki MT, Coates JD, Mason RP. Mercury methylation by dissimilatory iron-reducing bacteria. Applied and Environmental Microbiology. 2006; 72(12):7919â21. doi: 10.1128/aem.01602-06
- Straub KL, Buchholz-Cleven B. Geobacter bremensis sp. nov. and Geobacter pelophilus sp. nov., two dissimilatory ferric-iron-reducing bacteria. International Journal of Systematic and Evolutionary Microbiology. 2001; 51(5):1805â8. doi: 10.1099/00207713-51-5-1805
- Li FB, Li XM, Zhou SG, Zhuang L, Cao F, Huang DY, et al. Enhanced reductive dechlorination of DDT in an anaerobic system of dissimilatory iron-reducing bacteria and iron oxide. Environmental Pollution. 2010; 158(5):1733â40. doi: 10.1016/j.envpol.2009.11.020
- Baldi F, Marchetto D, Battistel D, Daniele S, Faleri C, De Castro C, et al. Iron-binding characterization and polysaccharide production by Klebsiella oxytoca strain isolated from mine acid drainage. Journal of Applied Microbiology. 2009; 107(4):1241â50. doi: 10.1111/j.1365-2672.2009.04302.x
- Baldi F, Marchetto D, Paganelli S, Piccolo O. Bio-generated metal binding polysaccharides as catalysts for synthetic applications and organic pollutant transformations. New Biotechnology. 2011; 29(1):74â8. doi: 10.1016/j.nbt.2011.04.012
- Baldi F, Minacci A, Pepi M, Scozzafava A. Gel sequestration of heavy metals by Klebsiella oxytoca isolated from iron mat. FEMS Microbiology Ecology. 2001; 36(2-3):169â74. doi: 10.1111/j.1574-6941.2001.tb00837.x
- Ivanov V, Stabnikov V, Zhuang WQ, Tay JH, Tay STL. Phosphate removal from the returned liquor of municipal wastewater treatment plant using iron-reducing bacteria. Journal of Applied Microbiology. 2005; 98(5):1152â61. doi: 10.1111/j.1365-2672.2005.02567.x
- Lovley DR, Stolz JF, Nord GL, Phillips EJP. Anaerobic production of magnetite by a dissimilatory iron-reducing microorganism. Nature. 1987; 330(6145):252â4. doi: 10.1038/330252a0
- Ottow JCG, Glathe H. Isolation and identification of iron-reducing bacteria from gley soils. Soil Biology and Biochemistry. 1971; 3(1):43â55. doi: 10.1016/0038-0717(71)90030-7
- Fredrickson JK, Gorby YA. Environmental processes mediated by iron-reducing bacteria. Current Opinion in Biotechnology. 1996; 7(3):287â94. doi: 10.1016/s0958-1669(96)80032-2
- Wielinga B, Mizuba MM, Hansel CM, Fendorf S. Iron promoted reduction of chromate by dissimilatory iron-reducing bacteria. Environmental Science & Technology. 2001; 35(3):522â7. doi: 10.1021/es001457b
- Lovley DR, Phillips EJ. Novel mode of microbial energy metabolism: Organic carbon oxidation coupled to dissimilatory reduction of iron or manganese. Applied and Environmental Microbiology. 1988; 54(6):1472-80. PMCID: PMC202682
- Laverman AM, Blum JS, Schaefer JK, Phillips E, Lovley DR, Oremland RS. Growth of strain SES-3 with arsenate and other diverse electron acceptors. Applied and Environmental Microbiology. 1995; 61(10):3556-61. PMCID: PMC1388705
- Chapelle FH, Lovley DR. Competitive exclusion of sulfate reduction by Fe(lll)-reducing bacteria: A mechanism for producing discrete zones of high-iron ground water. Ground Water. 1992; 30(1):29â36. doi: 10.1111/j.1745-6584.1992.tb00808.x
- Kianpour S, Ebrahiminezhad A, Mohkam M, Tamaddon AM, Dehshahri A, Heidari R, et al. Physicochemical and biological characteristics of the nanostructured polysaccharide-iron hydrogel produced by microorganism Klebsiella oxytoca. Journal of Basic Microbiology. 2016; 57(2):132â40. doi: 10.1002/jobm.201600417
- Beller HR, GrbiÄ-GaliÄ D, Reinhard M. Microbial degradation of toluene under sulfate-reducing conditions and the influence of iron on the process. Applied and Environmental Microbiology. 1992; 58(3):786-93. PMCID: PMC195335
- Straub KL, Benz M, Schink B, Widdel F. Anaerobic, nitrate-dependent microbial oxidation of ferrous iron. Applied and Environmental Microbiology. 1996; 62(4):1458-60. PMCID: PMC1388836
- Bott M. Anaerobic citrate metabolism and its regulation in enterobacteria. Archives of Microbiology. 1997; 167(2-3):78â88. doi: 10.1007/s002030050419
- Bosch J, Heister K, Hofmann T, Meckenstock RU. Nanosized iron oxide colloids strongly enhance microbial iron reduction. Applied and Environmental Microbiology. 2009; 76(1):184â9. doi: 10.1128/aem.00417-09
- Ebrahimi N, Rasoul-Amini S, Ebrahiminezhad A, Ghasemi Y, Gholami A, Seradj H. Comparative study on characteristics and cytotoxicity of bifunctional magnetic-silver nanostructures: Synthesized using three different reducing agents. Acta Metallurgica Sinica. 2016; 29(4):326â34. doi: 10.1007/s40195-016-0399-9
- Ebrahimi N, Rasoul-Amini S, Niazi A, Erfani N, Moghadam A, Ebrahiminezhad A, et al. Cytotoxic and apoptotic effects of three types of silver-iron oxide binary hybrid nanoparticles. Current Pharmaceutical Biotechnology. 2016; 17(12):1049â57. doi: 10.2174/1389201017666160907143807
- Ebrahiminezhad A, Davaran S, Rasoul-Amini S, Barar J, Moghadam M, Ghasemi Y. Synthesis, characterization and anti-listeria monocytogenes effect of Amino-Acid coated magnetite nanoparticles. Current Nanoscience. 2012; 8(6):868â74. doi: 10.2174/157341312803989178
- Ebrahiminezhad A, Ghasemi Y, Rasoul-Amini S, Barar J, Davaran S. Impact of Amino-Acid coating on the synthesis and characteristics of Iron-Oxide Nanoparticles (IONs). Bulletin of the Korean Chemical Society. 2012; 33(12):3957â62. doi: 10.5012/bkcs.2012.33.12.3957
- Ebrahiminezhad A, Ghasemi Y, Rasoul-Amini S, Barar J, Davaran S. Preparation of novel magnetic fluorescent nanoparticles using amino acids. Colloids and Surfaces B: Biointerfaces. 2013; 102:534â9. doi: 10.1016/j.colsurfb.2012.08.046
- Ebrahiminezhad A, Rasoul-Amini S, Davaran S, Barar J, Ghasemi Y. Impacts of iron oxide nanoparticles on the invasion power of listeria monocytogenes. Current Nanoscience. 2014; 10(3):382â8. doi: 10.2174/15734137113096660109
- Ebrahiminezhad A, Rasoul-Amini S, Kouhpayeh A, Davaran S, Barar J, Ghasemi Y. Impacts of amine functionalized iron oxide nanoparticles on HepG2 cell line. Current Nanoscience. 2014; 11(1):113â9. doi: 10.2174/1573413710666140911224743
- Ebrahiminezhad A, Varma V, Yang S, Berenjian A. Magnetic immobilization of Bacillus subtilis natto cells for menaquinone-7 fermentation. Applied Microbiology and Biotechnology. 2015; 100(1):173â80. doi: 10.1007/s00253-015-6977-3
- Ebrahiminezhad A, Varma V, Yang S, Ghasemi Y, Berenjian A. Synthesis and application of amine functionalized iron oxide nanoparticles on Menaquinone-7 fermentation: A step towards process intensification. Nanomaterials. 2015; 6(1):1-9. doi: 10.3390/nano6010001
- Gholami A, Rasoul-amini S, Ebrahiminezhad A, Seradj SH, Ghasemi Y. Lipoamino acid coated superparamagnetic iron oxide nanoparticles concentration and time dependently enhanced growth of human hepatocarcinoma cell line (Hep-G2). Journal of Nanomaterials. 2015; 2015:1â9. doi: 10.1155/2015/451405
- Dinali R, Ebrahiminezhad A, Manley-Harris M, Ghasemi Y, Berenjian A. Iron oxide nanoparticles in modern microbiology and biotechnology. Critical Reviews in Microbiology. 2017; 1â15. doi: 10.1080/1040841x.2016.1267708
- Duan J, Song L, Zhan J. One-pot synthesis of highly luminescent CdTe quantum dots by microwave irradiation reduction and their Hg2+-sensitive properties. Nano Research. 2009; 2(1):61â8. doi: 10.1007/s12274-009-9004-0
- Ebrahiminezhad A, Bagheri M, Taghizadeh S-M, Berenjian A, Ghasemi Y. Biomimetic synthesis of silver nanoparticles using microalgal secretory carbohydrates as a novel anticancer and antimicrobial. Advances in Natural Sciences: Nanoscience and Nanotechnology. 2016; 7(1):015018. doi: 10.1088/2043-6262/7/1/015018
- Ebrahiminezhad A, Barzegar Y, Ghasemi Y, Berenjian A. Green synthesis and characterization of silver nanoparticles using Alcea rosea flower extract as a new generation of antimicrobials. Chemical Industry and Chemical Engineering Quarterly. 2017; 23(1):31â7. doi: 10.2298/ciceq150824002e
- Ebrahiminezhad A, Ghasemi Y, Berenjian A. Template free synthesis of natural carbohydrates functionalised fluorescent silver nanoclusters. IET Nanobiotechnology. 2016; 10(3):120â3. doi: 10.1049/iet-nbt.2015.0072
- Ebrahiminezhad A, Najafipour S, Kouhpayeh A, Berenjian A, Rasoul-Amini S, Ghasemi Y. Facile fabrication of uniform hollow silica microspheres using a novel biological template. Colloids and Surfaces B: Biointerfaces. 2014; 118:249â53. doi: 10.1016/j.colsurfb.2014.03.052
- Ebrahiminezhad A, Taghizadeh S, Berenjian A, Naeini FH, Ghasemi Y. Green synthesis of silver nanoparticles capped with natural carbohydrates using ephedra intermedia. Nanoscience & Nanotechnology-Asia. 2017; 7(1):104â12. doi: 10.2174/2210681206666161006165643
- Ebrahiminezhad A, Taghizadeh S, Berenjian A, Rahi A, Ghasemi Y. Synthesis and characterization of silver nanoparticles with natural carbohydrate capping using zataria multiflora. Advanced Materials Letters. 2016; 7(11):939â44. doi: 10.5185/amlett.2016.6458
- Ebrahiminezhad A, Raee MJ, Manafi Z, Sotoodeh Jahromi A, Ghasemi Y. Ancient and novel forms of silver in medicine and biomedicine. Journal of Advanced Medical Sciences and Applied Technologies. 2016; 2(1):122. doi: 10.18869/nrip.jamsat.2.1.122
- White AF, Brantley SL. Reviews in minerology. Volume 31: Chemical weathering rates of silicate minerals. New York: Mineralogical Society of America; 1995.
- Waychunas GA, Kim CS, Banfield JF. Nanoparticulate iron oxide minerals in soils and sediments: Unique properties and contaminant scavenging mechanisms. Journal of Nanoparticle Research. 2005; 7(4-5):409â33. doi: 10.1007/s11051-005-6931-x
- Dehner CA, Barton L, Maurice PA, DuBois JL. Size-Dependent bioavailability of hematite (α-Fe2O3) nanoparticles to a common aerobic bacterium. Environmental Science & Technology. 2011; 45(3):977â83. doi: 10.1021/es102922j
- Yan B, Wrenn BA, Basak S, Biswas P, Giammar DE. Microbial reduction of Fe(III) in hematite nanoparticles by geobacter sulfurreducens. Environmental Science & Technology. 2008; 42(17):6526â31. doi: 10.1021/es800620f
- Gallo G, Baldi F, Renzone G, Gallo M, Cordaro A, Scaloni A, et al. Adaptative biochemical pathways and regulatory networks in Klebsiella oxytoca BAS-10 producing a biotechnologically relevant exopolysaccharide during Fe(III)-citrate fermentation. Microbial Cell Factories. 2012; 11(1):152. doi: 10.1186/1475-2859-11-152
|