- Bear MF, Connors BW, Paradiso MA. Neuroscience. Philadelphia: Lippincott Williams & Wilkins; 2007.
- Wood DC. Habituation in stentor: Produced by mechanoreceptor channel modification. Journal of Neuroscience. 1988; 8(7):2254-8. PMID: 3249223
- Rayport SG, Schacher S. Synaptic plasticity in vitro: Cell culture of identified Aplysia neurons mediating short-term habituation and sensitization. Journal of Neuroscience. 1986; 6(3):759-63. PMID: 3958793
- Mutschler I, Wieckhorst B, Speck O, Schulze-Bonhage A, Hennig J, Seifritz E, et al. Time scales of auditory habituation in the amygdala and cerebral cortex. Cerebral Cortex. 2010; 20(11):2531â9. doi: 10.1093/cercor/bhq001
- Rosburg T, Zimmerer K, Huonker R. Short-term habituation of auditory evoked potential and neuromagnetic field components in dependence of the interstimulus interval. Experimental Brain Research. 2010; 205(4):559â70. doi: 10.1007/s00221-010-2391-3
- Hudspeth AJ, Jessell TM, Kandel ER, Schwartz JH, Siegelbaum SA. Principles of neural science. Amsterdam: Elsevier; 2013.
- Nakagaki T, Yamada H, Toth Ã. Intelligence: Maze-solving by an amoeboid organism. Nature. 2000; 407(6803):470. doi: 10.1038/35035159
- Nakagaki T, Kobayashi R, Nishiura Y, Ueda T. Obtaining multiple separate food sources: Behavioural intelligence in the Physarum plasmodium. Proceedings of the Royal Society B: Biological Sciences. 2004; 271(1554):2305â10. doi: 10.1098/rspb.2004.2856
- Saigusa T, Tero A, Nakagaki T, Kuramoto Y. Amoebae anticipate periodic events. Physical Review Letters. 2008; 100(1). doi: 10.1103/physrevlett.100.018101
- Schaap P, Barrantes I, Minx P, Sasaki N, Anderson RW, Benard M, et al. The physarum polycephalum genome reveals extensive use of prokaryotic two-component and metazoan-type tyrosine kinase signaling. Genome Biology and Evolution. 2015; 8(1):109â25. doi: 10.1093/gbe/evv237
- Armus HL, Montgomery AR, Jellison JL. Discrimination learning in paramecia (P. caudatum). The Psychological Record. 2006; 56(4):489-98.
- Day LM, Bentley M. A note on learning in paramecium. Journal of Animal Behavior. 1911; 1(1):67â73. doi: 10.1037/h0071290
- French JW. Trial and error learning in paramecium. Journal of Experimental Psychology. 1940; 26(6):609â13. doi: 10.1037/h0059015
- Hanzel TE, Rucker W. Escape training in paramecia. Journal of Biological Psychology; 1971.
- Huber JC, Rucker WB, McDiarmid CG. Retention of escape training and activity changes in single paramecia. Journal of Comparative and Physiological Psychology. 1974; 86(2):258â66. doi: 10.1037/h0035957
- Applewhite PB, Gardner FT. Tube-escape behavior of paramecia. Behavioral Biology. 1973; 9(2):245â50. doi: 10.1016/s0091-6773(73)80159-2
- Hinkle DJ, Wood DC. Is tube-escape learning by protozoa associative learning. Behavioral Neuroscience. 1994; 108(1):94â9. doi: 10.1037/0735-7044.108.1.94
- Gelber B. Investigations of the behavior of paramecium aurelia: I. Modification of behavior after training with reinforcement. Journal of Comparative and Physiological Psychology. 1952; 45(1):58â65. doi: 10.1037/h0063093
- Jensen DD. More on âLearningâ in Paramecia. Science. 1957; 126(3287):1341â2. doi: 10.1126/science.126.3287.1341
- Mingee CM. Retention of a brightness discrimination task in Paramecia (P. caudatum). International Journal of Comparative Psychology. 2013; 26(3):202-12.
- Verduyckt M, Vignaud H, Bynens T, Van den Brande J, Franssens V, Cullin C, et al. Yeast as a model for Alzheimerâs disease: Latest studies and advanced strategies. Methods in Molecular Biology. 2016; 197â215. doi: 10.1007/978-1-4939-2627-5_11
- Moosavi B, Mousavi B, Macreadie IG. Yeast model of Amyloid-β and Tau aggregation in Alzheimerâs disease. Journal of Alzheimerâs Disease. 2015; 47(1):9â16. doi: 10.3233/jad-150173
- Hameroff S, Penrose R. Orchestrated reduction of quantum coherence in brain microtubules: A model for consciousness. Mathematics and Computers in Simulation. 1996; 40(3-4):453â80. doi: 10.1016/0378-4754(96)80476-9
- Hameroff S, Penrose R. Consciousness in the universe. Physics of Life Reviews. 2014; 11(1):39â78. doi: 10.1016/j.plrev.2013.08.002
- Hameroff SR. Did consciousness cause the Cambrian evolutionary explosion. In S Hameroff, A Kaszniak, A Scott (Eds.) Toward a science of consciousness II: The second Tucson discussions and debates. Cambridge: MIT Press; 1998.
- Dorvash M, Hatam Gh, Yeganeh Y, Alipour A. A replication study on paramecium learning. Paper presented at: 3rd Congress of Basic and Clinical Neuroscience. 29-31 October 2014; Tehran, Iran. doi: 10.13140/RG.2.1.1912.3920
- Quickenden TI, Hee SSQ. The spectral distribution of the luminescence emitted during growth of the yeast Saccharomyces cerevisiae and its relationship to mitogenetic radiation. Photochemistry and Photobiology. 1976; 23(3):201â4. doi: 10.1111/j.1751-1097.1976.tb07242.
- Shen X, Mei W, Xu X. Activation of neutrophils by a chemically separated but optically coupled neutrophil population undergoing respiratory burst. Experientia. 1994; 50(10):963â8. doi: 10.1007/bf01923488
- Fels D. Cellular communication through light. PLoS ONE. 2009; 4(4):5086. doi: 10.1371/journal.pone.0005086
- Alipour A. Demystifying the biophoton-induced cellular growth: A simple model. Journal of Advanced Medical Sciences and Applied Technologies. 2015; 1(2):112. doi: 10.18869/nrip.jamsat.1.2.112
- Kreimer G. The green algal eyespot apparatus: A primordial visual system and more? Current Genetics. 2008; 55(1):19â43. doi: 10.1007/s00294-008-0224-8
- Suzuki T, Yamasaki K, Fujita S, Oda K, Iseki M, Yoshida K, et al. Archaeal-type rhodopsins in Chlamydomonas: Model structure and intracellular localization. Biochemical and Biophysical Research Communications. 2003; 301(3):711â7. doi: 10.1016/s0006-291x(02)03079-6
- Iseki M, Matsunaga S, Murakami A, Ohno K, Shiga K, Yoshida K, et al. A blue-light-activated adenylyl cyclase mediates photoavoidance in Euglena gracilis. Nature. 2002; 415(6875):1047â51. doi: 10.1038/4151047a
- Cohen P. The structure and regulation of protein phosphatases. Annual Review of Biochemistry. 1989; 58(1):453â508. doi: 10.1146/annurev.bi.58.070189.002321
- Poovaiah BW, Reddy ASN, Leopold AC. Calcium messenger system in plants. Critical Reviews in Plant Sciences. 1987; 6(1):47â103. doi: 10.1080/07352688709382247
- Roberts D. Calcium-modulated proteins: Targets of intracellular calcium signals in higher plants. Annual Review of Plant Physiology and Plant Molecular Biology. 1992; 43(1):375â414. doi: 10.1146/annurev.arplant.43.1.375
- Litvin FF, Sineshchekov OA, Sineshchekov VA. Photoreceptor electric potential in the phototaxis of the alga Haematococcus pluvialis. Nature. 1978; 271(5644):476â8. doi: 10.1038/271476a0
- Kamiya R. Submicromolar levels of calcium control the balance of beating between the two flagella in demembranated models of Chlamydomonas. The Journal of Cell Biology. 1984; 98(1):97â107. doi: 10.1083/jcb.98.1.97
- Harz H, Hegemann P. Rhodopsin-regulated calcium currents in Chlamydomonas. Nature. 1991; 351(6326):489â91. doi: 10.1038/351489a0
- Jekely G. Evolution of phototaxis. Philosophical Transactions of the Royal Society B: Biological Sciences. 2009; 364(1531):2795â808. doi: 10.1098/rstb.2009.0072
- Yoon HS, Hackett JD, Pinto G, Bhattacharya D. The single, ancient origin of chromist plastids. Journal of Phycology. 2002; 38(1):40. doi: 10.1046/j.1529-8817.38.s1.8.x
- Hand WG, Schmidt JA. Phototactic orientation by the marine dinoflagellate gyrodinium dorsum kofoid. The Journal of Protozoology. 1975; 22(4):494â8. doi: 10.1111/j.1550-7408.1975.tb05217.x
- Huang B. The contractile process in the ciliate, stentor coeruleus: I. The role of microtubules and filaments. The Journal of Cell Biology. 1973; 57(3):704â28. doi: 10.1083/jcb.57.3.704
- Tao N, Orlando M, Hyon JS, Gross M, Song PS. A new photoreceptor molecule from Stentor coeruleus. Journal of the American Chemical Society. 1993; 115(6):2526â8. doi: 10.1021/ja00059a068
- Checcucci G, Shoemaker RS, Bini E, Cerny R, Tao N, Hyon JS, et al. Chemical structure of blepharismin, the photosensor pigment for blepharisma japonicum. Journal of the American Chemical Society. 1997; 119(24):5762â3. doi: 10.1021/ja970713q
- Nakaoka Y, Imaji T, Hara M, Hashimoto N. Spontaneous fluctuation of the resting membrane potential in Paramecium: Amplification caused by intracellular Ca2+. Journal of Experimental Biology. 2008; 212(2):270â6. doi: 10.1242/jeb.023283
- Thiele J, Schultz JE. Ciliary membrane vesicles of paramecium contain the voltage-sensitive calcium channel. Proceedings of the National Academy of Sciences. 1981; 78(6):3688â91. doi: 10.1073/pnas.78.6.3688
- Doughty M, Dryl S. Control of ciliary activity in Paramecium: An analysis of chemosensory transduction in a eukaryotic unicellular organism. Progress in Neurobiology. 1981; 16(1):1â115. doi: 10.1016/0301-0082(81)90008-3
- Hinrichsen RD, Saimi Y, Hennessey T, Kung C. Mutants in paramecium tetraurelia defective in their axonemal response to calcium. Cell Motility. 1984; 4(4):283â95. doi: 10.1002/cm.970040406
- Machemer H, Ogura A. Ionic conductances of membranes in ciliated and deciliated paramecium. The Journal of Physiology. 1979; 296(1):49â60. doi: 10.1113/jphysiol.1979.sp012990
- Brehm P, Eckert R. An electrophysiological study of the regulation of ciliary beating frequency in paramecium. The Journal of Physiology. 1978; 283(1):557â68. doi: 10.1113/jphysiol.1978.sp012519
- Nakaoka Y, Imaji T, Hara M, Hashimoto N. Spontaneous fluctuation of the resting membrane potential in Paramecium: Amplification caused by intracellular Ca2+. Journal of Experimental Biology. 2008; 212(2):270â6. doi: 10.1242/jeb.023283
|