| تعداد نشریات | 20 |
| تعداد شمارهها | 1,235 |
| تعداد مقالات | 11,250 |
| تعداد مشاهده مقاله | 79,150,369 |
| تعداد دریافت فایل اصل مقاله | 110,876,748 |
Secure Integration of Electronic Health Data Using Advanced Machine Learning and Blockchain Technology | ||
| Health Management & Information Science | ||
| دوره 12، شماره 4، دی 2025، صفحه 274-280 اصل مقاله (283.1 K) | ||
| نوع مقاله: Original Article | ||
| شناسه دیجیتال (DOI): 10.30476/jhmi.2025.108377.1309 | ||
| نویسندگان | ||
| Mostafa Kashani1؛ Seddigheh Barzekar2؛ Asma Zare* 3 | ||
| 1Department of Health Information Technology, Sirjan School of Medical Sciences, Sirjan, Iran. | ||
| 2Department of Medicine, Sirjan School of Medical Sciences, Sirjan, Iran | ||
| 3Department of Occupational Health Engineering, Sirjan School of Medical Sciences, Sirjan, Iran. | ||
| چکیده | ||
| Introduction: Data integration and privacy preservation in electronic health records (EHRs) remain major challenges. This study combines advanced machine learning and blockchain to improve integration and security. Methods: Using a synthetic multicenter EHR dataset (patient records, visits, diagnoses, medications, observations, procedures), we evaluated an Irregular Fuzzy Cellular Automata (IFCA) model—which incorporates fuzzy-logic rules—against XGBoost and LightGBM. Preprocessing included complete anonymization and 98.5% missing-value imputation. Machine learning addressed data integration, inconsistency resolution, and classification; HL7-FHIR–like formats and a Hyperledger Fabric consortium blockchain evaluated secure data exchange and access control. Analyses used Python 3.10 and R 4.2. Results: Machine learning (data integrity & classification): IFCA achieved 92% accuracy (F1=0.90, AUC-ROC=0.92), outperforming XGBoost (89%) and LightGBM (90%); ANOVA indicated statistically significant differences (P<0.05). Blockchain & interoperability (security & exchange): data-exchange success was 94%, combined privacy/security score 95%, with 92% simulated attack prevention. Conclusion: The combined approach shows promise for EHR integration and privacy preservation. Validation on real multisite EHR data is recommended to confirm generalizability. | ||
تازه های تحقیق | ||
Mostafa Kashani (Google Scholar) Asma Zare (Google Scholar) | ||
| کلیدواژهها | ||
| Electronic Health Records؛ Data Integration؛ Machine Learning؛ Blockchain؛ Fuzzy Logic | ||
| مراجع | ||
|
1. Modi S, Feldman SS. The Value of Electronic Health Records Since the Health Information Technology for Economic and Clinical Health Act: Systematic Review. JMIR Med Inform. 2022;10(9):e37283. doi: 10.2196/37283.
2. Hsu H, Greenwald PW, Laghezza MR, Steel P, Trepp R, Sharma R. Clinical informatics during the COVID-19 pandemic: Lessons learned and implications for emergency department and inpatient operations. J Am Med Inform Assoc. 2021;28(4):879-89. doi: 10.1093/jamia/ocaa311.
3. Ewoh P, Vartiainen T. Vulnerability to Cyberattacks and Sociotechnical Solutions for Health Care Systems: Systematic Review. J Med Internet Res. 2024;26:e46904. doi: 10.2196/46904.
4. Amar F, April A, Abran A. Electronic Health Record and Semantic Issues Using Fast Healthcare Interoperability Resources: Systematic Mapping Review. J Med Internet Res. 2024;26:e45209. doi: 10.2196/45209.
5. Ayaz M, Pasha MF, Alzahrani MY, Budiarto R, Stiawan D. The Fast Health Interoperability Resources (FHIR) Standard: Systematic Literature Review of Implementations, Applications, Challenges and Opportunities. JMIR Med Inform. 2021;9(7):e21929. doi: 10.2196/21929.
6. Fonseca ALA, Barbalho IMP, Fernandes F, Arrais Junior E, Nagem DAP, Cardoso PH, et al. Blockchain in Health Information Systems: A Systematic Review. Int J Environ Res Public Health. 2024;21(11):11512. doi: 10.3390/ijerph21111512.
7. Fang HSA, Tan TH, Tan YFC, Tan CJM. Blockchain Personal Health Records: Systematic Review. J Med Internet Res. 2021;23(4):e25094. doi: 10.2196/25094.
8. Williamson SM, Prybutok V. Balancing privacy and progress: a review of privacy challenges, systemic oversight, and patient perceptions in AI-driven healthcare. Applied Sciences. 2024;14(2):675. doi: 10.3390/app14020675.
9. Khosravi B, Rouzrokh P, Erickson BJ. Getting More Out of Large Databases and EHRs with Natural Language Processing and Artificial Intelligence: The Future Is Here. J Bone Joint Surg Am. 2022;104(Suppl 3):51-5. doi: 10.2106/JBJS.22.00567.
10. Fisher S, Rosella LC. Priorities for successful use of artificial intelligence by public health organizations: a literature review. BMC Public Health. 2022;22(1):2146. doi: 10.1186/s12889-022-14422-z.
11. Hiwale M, Walambe R, Potdar V, Kotecha K. A systematic review of privacy-preserving methods deployed with blockchain and federated learning for the telemedicine. Healthc Anal (N Y). 2023;3:100192. doi: 10.1016/j.health.2023.100192.
12. Yoon J, Mizrahi M, Ghalaty NF, Jarvinen T, Ravi AS, Brune P, et al. EHR-Safe: generating high-fidelity and privacy-preserving synthetic electronic health records. NPJ Digit Med. 2023;6(1):141. doi: 10.1038/s41746-023-00888-7.
13. Tachinardi U, Grannis SJ, Michael SG, Misquitta L, Dahlin J, Sheikh U, et al. Privacy-preserving record linkage across disparate institutions and datasets to enable a learning health system: The national COVID cohort collaborative (N3C) experience. Learn Health Syst. 2024;8(1):e10404. doi: 10.1002/lrh2.10404.
14. Ettaloui N, Arezki S, Gadi T. Blockchain-Based Electronic Health Record: Systematic Literature Review. Human Behavior and Emerging Technologies. 2024;2024(1):4734288. doi: 10.1155/hbe2/4734288.
15. Kiania K, Jameli SM, Rahmani AM. Blockchain-based privacy and security preserving in electronic health: a systematic review. Multimed Tools Appl. 2023:1-27. doi: 10.1007/s11042-023-14488-w.
16. Wu Z, Wang H, Wan J, Zhang L, Huang J. An inner product predicate-based medical data-sharing and privacy protection system. IEEE Access. 2024;12:68680-96 doi: 10.1109/ACCESS.2024.3400611.
17. Wu G, Wang S, Ning Z, Zhu B. Privacy-Preserved Electronic Medical Record Exchanging and Sharing: A Blockchain-Based Smart Healthcare System. IEEE J Biomed Health Inform. 2022;26(5):1917-27. doi: 10.1109/JBHI.2021.3123643.
18. Al Mamun A, Azam S, Gritti C. Blockchain-based electronic health records management: a comprehensive review and future research direction. IEEE Access. 2022;10:5768-89. doi: 10.1109/access.2022.3141079.
19. Alzubi JA, Alzubi OA, Singh A, Ramachandran M. Cloud-IloT-based electronic health record privacy-preserving by CNN and blockchain-enabled federated learning. IEEE Transactions on Industrial Informatics. 2022;19(1):1080-7.
20. Jonnagaddala J, Wong ZS. Privacy preserving strategies for electronic health records in the era of large language models. NPJ Digit Med. 2025;8(1):34. doi: 10.1038/s41746-025-01429-0.
21. Stamatellis C, Papadopoulos P, Pitropakis N, Katsikas S, Buchanan WJ. A Privacy-Preserving Healthcare Framework Using Hyperledger Fabric. Sensors (Basel). 2020;20(22):6587. doi: 10.3390/s20226587.
22. Liu J, Fan Y, Sun R, Liu L, Wu C, Mumtaz S. Blockchain-aided privacy-preserving medical data sharing scheme for e-healthcare system. IEEE Internet of Things Journal. 2023;10(24):21377-88. doi: 10.1109/JIOT.2023.3287636.
23. Vanin F, Policarpo LM, Righi RDR, Heck SM, da Silva VF, Goldim J, et al. A Blockchain-Based End-to-End Data Protection Model for Personal Health Records Sharing: A Fully Homomorphic Encryption Approach. Sensors (Basel). 2022;23(1):14. doi: 10.3390/s23010014.
24. Tan L, Yu K, Shi N, Yang C, Wei W, Lu H. Towards secure and privacy-preserving data sharing for COVID-19 medical records: A blockchain-empowered approach. IEEE Transactions on Network Science and Engineering. 2021;9(1):271-81. doi: 10.1109/tnse.2021.3101842.
25. Boyd JH, Thompson S, Schull M, Park AL, Hachey B, Akbari A. Synthetic Data, Common Data Models and Federation: Holy Trinity or unholy mess? International Journal of Population Data Science. 2024;9(5). doi: 10.23889/ijpds.v9i5.2933.
26. Zaghloul E, Li T, Ren J. d-EMR: Secure and distributed Electronic Medical Record management. High-Confidence Computing. 2023;3(1):100101. doi: 10.1016/j.hcc.2022.100101
27. Ruotsalainen P, Blobel B. Transformed Health Ecosystems-Challenges for Security, Privacy, and Trust. Front Med (Lausanne). 2022;9:827253. doi: 10.3389/fmed.2022.827253. | ||
|
آمار تعداد مشاهده مقاله: 175 تعداد دریافت فایل اصل مقاله: 56 |
||