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Abstract
Introduction: Data integration and privacy preservation in electronic health records (EHRs) 
remain major challenges. This study combines advanced machine learning and blockchain to 
improve integration and security.
Methods: Using a synthetic multicenter EHR dataset (patient records, visits, diagnoses, 
medications, observations, procedures), we evaluated an Irregular Fuzzy Cellular Automata 
(IFCA) model—which incorporates fuzzy-logic rules—against XGBoost and LightGBM. 
Preprocessing included complete anonymization and 98.5% missing-value imputation. 
Machine learning addressed data integration, inconsistency resolution, and classification; 
HL7-FHIR–like formats and a Hyperledger Fabric consortium blockchain evaluated secure 
data exchange and access control. Analyses used Python 3.10 and R 4.2.
Results: Machine learning (data integrity & classification): IFCA achieved 92% accuracy 
(F1=0.90, AUC-ROC=0.92), outperforming XGBoost (89%) and LightGBM (90%); ANOVA 
indicated statistically significant differences (P<0.05). Blockchain & interoperability (security 
& exchange): data-exchange success was 94%, combined privacy/security score 95%, with 
92% simulated attack prevention.
Conclusion: The combined approach shows promise for EHR integration and privacy 
preservation. Validation on real multisite EHR data is recommended to confirm 
generalizability.
Keywords: Electronic Health Records, Data Integration, Privacy, Machine Learning, 
Blockchain, Fuzzy Logic
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Introduction

Electronic Health Records (EHRs) are 
digital systems that collect, store, and 
manage patients’ health information over 

time. EHRs centralize clinical data, support 
clinical decision-making, improve diagnostic 
accuracy, streamline workflows, and can reduce 
operational costs — benefits that accrue to 
patients, healthcare providers, and broader 
health systems by enabling better-coordinated 
care and faster public-health responses. During 
crises such as the COVID-19 pandemic, EHRs 
enabled rapid data sharing and real-time clinical 
insights, highlighting their pivotal role in modern 
healthcare (1, 2).

Despite these benefits, large-scale EHR 
deployments face two interrelated and critical 
challenges:

Data integrity and integration. Heterogeneous 

systems, differing data formats, and fragmented 
clinical workflows produce inconsistent and 
incomplete records across institutions, which can 
lead to duplication, increased costs, and potential 
clinical errors. Standards such as Fast Healthcare 
Interoperability Resources (FHIR) aim to improve 
interoperability, but technical and organizational 
barriers limit uniform adoption (3-5).

Data security and privacy. Health data 
are highly sensitive and increasingly targeted 
by cyberattacks. Traditional protections 
(encryption, access controls) are necessary 
but may be insufficient against sophisticated 
threats. Regulatory requirements (e.g., HIPAA, 
GDPR) further complicate design choices for 
data sharing. Advanced approaches, including 
blockchain for tamper-evident audit trails and 
privacy-enhancing technologies, have been 
proposed to strengthen security while preserving 
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usability (6-8).
To address these two problem domains, two 

groups of solutions are particularly relevant:
Solutions for data integrity: standardized 

exchange formats (e.g., HL7 FHIR–like 
structures), harmonization and mapping 
procedures, and machine-learning techniques 
(including tree-based models such as XGBoost 
and LightGBM and graph/fuzzy-based methods 
such as IFCA) for inconsistency resolution, 
record linkage, and predictive tasks. Federated 
learning offers a way to train models across sites 
without moving raw records, thereby supporting 
integration while respecting privacy (5, 9-11).

Solutions for data security: cryptographic 
protections, strict access-control policies, privacy-
preserving training (e.g., differential privacy), and 
distributed ledger technologies (e.g., consortium 
Hyperledger Fabric) to provide provenance, access 
logging, and tamper evidence. Combining these 
mechanisms with standardized data exchange 
enables safer, auditable interoperability (6-8).

This study evaluates a combined approach 
that applies advanced machine-learning models 
(including an Irregular Fuzzy Cellular Automata, 
IFCA) for data-integration and classification 
tasks, alongside standardized exchange formats 
and blockchain-based controls for secure data 
exchange and auditability. We include a simulated 
multicenter case study to exercise the integration 
and security pipelines and to assess performance 
under realistic heterogeneity. The work aims 
to identify practical strategies to improve the 
reliability, usability, and safety of large-scale 
EHR systems.

Methods
This simulation-based experimental study (study 
year: 2024) addresses data integration and privacy 
preservation in large-scale Electronic Health 
Record (EHR) systems by combining quantitative 
and qualitative evaluations of machine-learning 
models, standardized data-exchange protocols, 
and security technologies. Reporting follows 
CONSORT-AI and STROBE guidance to promote 
transparency and reproducibility.

Data Source and Format
The experiments used a synthetic, simulated 

multicenter EHR dataset composed of 
patient records, visits, diagnoses, medication 
prescriptions, clinical observations, and 

procedures. Records were provided in both 
structured (CSV) and semi-structured (JSON) 
formats to emulate heterogeneity across sources 
while avoiding real-world privacy constraints. 
The dataset was augmented and balanced using 
techniques such as SMOTE, producing a sample 
size greater than 1,000 for model evaluation. 
(See Data Availability for generation scripts and 
repository links..

Data Integrity 
This subsection describes the methods used 

to achieve data integration, harmonization, and 
model-based inference.

Preprocessing and harmonization. 
Preprocessing was implemented in Python 3.10 
using Pandas and NumPy. Steps included schema 
validation, consolidation to a unified data model, 
code mapping (diagnoses and medications to 
consistent vocabularies), deduplication and 
record linkage, and timestamp normalization. 
Patient identifiers were anonymized and sensitive 
free-text fields were masked. Missing values were 
imputed using mean imputation for numerical 
features and mode imputation for categorical 
features (overall imputation success reported as 
98.5%). Numerical features were scaled using 
Min–Max normalization. Patient ages were 
computed from recorded birth dates relative to 
the reference date September 1, 2025.

Feature engineering and balancing. Time-
series observations were aligned to visit windows 
and transformed to summary features where 
appropriate. SMOTE was applied to training folds 
to mitigate class imbalance during supervised 
learning; resampling was restricted to training 
data to avoid leakage.

Modeling for integrity and classification. The 
Irregular Fuzzy Cellular Automata (IFCA) model 
was implemented to handle irregular graph-like 
record structures and uncertainty. IFCA models 
records as nodes with fuzzy states in [0,1]; node 
states are updated via local fuzzy rules using 
neighborhood information (implemented with 
NetworkX and NumPy). Cells update their state 
using local fuzzy rules according to the formula:

where 𝑓 is a fuzzy membership function (we 
used a Gaussian membership, σ=0.5) and 𝑤𝑗 are 
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neighborhood weights based on graph distances 
(implemented with NetworkX). Neighborhood 
radii varied between 1 and 3, fuzzy learning 
rate=0.1, Gaussian membership function with 
σ=0.5, and iterations run until convergence 
(typically ≈ 50 iterations). IFCA was applied for 
record ranking, inconsistency resolution (e.g., 
conflicting discharge locations), and as a feature 
engineering step prior to classification.

Benchmark models (XGBoost, LightGBM) 
were trained for classification and integration 
tasks. Data were split 80:20 into training 
and test sets with 10-fold cross-validation on 
the training set for hyperparameter tuning 
(XGBoost: learning_rate=0.1, max_depth=6; 
LightGBM: num_leaves=31; GridSearchCV 
used to select parameters). Performance metrics 
included accuracy (primary metric for diagnosis 
classification), F1-score, AUC-ROC, processing 
speed (seconds, measured with the time module), 
and scalability (reported as data coverage 
percentage). Federated learning experiments were 
run to demonstrate training without exchanging 
raw records.

Data Exchange and Security Evaluation
This subsection describes the methods used 

to evaluate secure exchange, access control, and 
privacy preservation.

Standards and interoperability testing. 
Interoperability was exercised using HL7 FHIR–
like JSON resources and RESTful API endpoints. 
Data exchange success was measured as the 
percentage of records successfully transferred, 
parsed, and integrated by downstream nodes. 
Inconsistency reduction was quantified for 
selected fields (for example, discharge locations).

Privacy-preserving techniques. Differential 
privacy was applied to selected training 
experiments using a gradient-noise mechanism 
with an ε=1.0 privacy budget. Masking and 
irreversible hashing were applied to identifiers 
and sensitive fields during preprocessing. 
Federated learning experiments complemented 
DP to reduce information sharing of raw records.

Blockchain and access control. A consortium 
blockchain architecture based on Hyperledger 
Fabric was simulated to manage authorized 
nodes and to provide tamper-evident audit trails 
via smart contracts. We assessed the combined 
privacy/security posture by simulating common 
attack vectors (for example, man-in-the-middle 

and replay attacks) against REST endpoints 
and the blockchain network. Security outcomes 
presented in Results (e.g., attack-prevention 
rate and aggregated privacy/security score) are 
derived from these simulations.

Case Study Scope and Analysis
The case study consisted of a simulated 

EHR aggregation scenario designed to exercise 
the integration, harmonization, and security 
pipelines described above. This simulated 
multicenter project aggregates dispersed records 
to evaluate real-world heterogeneity and to 
quantify interoperability and security outcomes. 
Statistical analyses were performed in R version 
4.2; ANOVA was applied to relevant comparisons 
with significance assessed at P<0.05. To support 
reproducibility while controlling access to 
synthetic materials, all code, data-generation 
scripts, and configuration files used in the case 
study are available from the corresponding 
author upon reasonable request.

Results
Results are presented in two parts that mirror 
the Methods: Data integrity (preprocessing 
& modeling) and Data security & exchange. 
Statistical significance is reported at P<0.05 
where applicable.

Data Integrity — Preprocessing Outcomes
Patient identifier anonymization was applied 

to all records (100% anonymization).
Missing-value imputation (mean for 

numerical, mode for categorical) was applied 
with an overall imputation success of 98.5%.

Normalization and conversion to health-
standard formats achieved a reported 95% 
integration rate.

Security measures (masking and noise 
addition) increased resistance to simulated attack 
scenarios by 93% according to our simulated tests.

These preprocessing and privacy steps 
demonstrate the pipeline’s capacity to standardize 
heterogeneous EHR inputs while protecting 
sensitive attributes.

Model Performance
Model performance is summarized in Table 1. 

IFCA achieved the highest reported classification 
performance (Accuracy=92%, F1=0.90, AUC-
ROC=0.92) compared with XGBoost (89%, 0.87, 
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0.89) and LightGBM (90%, 0.88, 0.90). Reported 
processing speeds were 12 s for IFCA, 16 s for 
XGBoost, and 14 s for LightGBM (measured on 
the experimental setup reported in Methods). 
One-way ANOVA was used to assess differences 
across models with significance tested at P<0.05 
(see Table 1 and statistical reporting). 

Data Security and Exchange
Interoperability and security outcomes are 

presented separately from modeling results:
Interoperability testing returned a 94% data 

exchange success rate and an 86% reduction in 
inconsistencies for the evaluated integration 
pipeline.

Security testing of the consortium blockchain 
combined with privacy-preserving methods 
reported a 92% attack-prevention rate and a 
combined 95% privacy/security score.

These metrics are summarized in Table 2.

Case Study
The case study applied the integration and 

security pipeline to aggregated simulated EHR 
records from multiple hospitals to exercise 
diagnosis diversity handling and discharge-
location harmonization. The integration, 
interoperability, and security outcomes reported 
above were observed in this exercise. ANOVA 
analyses confirmed significant differences where 
reported (P<0.05). To support reproducibility 
while controlling access to synthetic materials, 
the experimental code, configuration files, and 
anonymized synthetic data used in the case study 
are available from the corresponding author 
upon reasonable request.

Discussion
This We evaluated a combined approach that 

uses advanced machine-learning methods 
(including an Irregular Fuzzy Cellular Automata, 
IFCA), standardized data-exchange formats, 
and blockchain-based controls to address two 
core challenges in large-scale Electronic Health 
Record (EHR) systems: data integrity and data 
security. Below we compare our findings with 
related work, discuss implications, and describe 
limitations and directions for future research.

Data Integrity — Integration, Harmonization, 
and Modeling

Our preprocessing and harmonization 
pipeline reinforces the view in prior work that 
careful data curation is a prerequisite for reliable 
EHR analytics (see Yoon et al.). The adoption 
of HL7-FHIR–like resources in our pipeline 
reduced lexical heterogeneity and aided parsing, 
consistent with the interoperability-focused 
recommendations of Tachinardi et al. (12, 13). 
Where earlier studies relied primarily on rule-
based linkage and mapping, our hybrid strategy 
(standards + ML for inconsistency resolution) 
aligns with literature advocating combined 
approaches for robust record linkage and 
harmonization (5, 14). On modeling, the IFCA 
approach—embedding fuzzy-logic rules within 
a graph-like representation—provided a natural 
way to handle irregular and uncertain record 
structures, echoing validations of fuzzy and 
graph-aware methods in heterogeneous health 
data contexts (15, 16). Tree-based gradient-
boosting models (XGBoost, LightGBM) remain 
strong baselines for structured tasks and are 
widely used in comparable studies (17). 

Our results support the common 
recommendation that model choice should be 
driven by the specific data characteristics and 
deployment constraints, in agreement with recent 
reviews (18). Federated learning also appears 

Table 1: Model Performance Comparison
Model Accuracy (%) F1-score AUC-ROC Processing Speed (s)
IFCA 92 0.90 0.92 12
XGBoost 89 0.87 0.89 16
LightGBM 90 0.88 0.90 14

Table 2: Data Exchange and Security Performance
Metric Proposed Method Traditional Method
Data Exchange Success (%) 94 84
Inconsistency Reduction (%) 86 71
Attack Prevention (%) 92 77
Privacy Preservation (%) 95 79
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promising for enabling cross-site model training 
without centralizing raw records, consistent with 
current federated-learning literature (11, 19). 

Taken together, this work supports three 
practical lessons emphasized in similar studies: 
(1) standardized data models ease downstream 
processing (13), (2) hybrid pipelines combining 
rules, mapping, and ML manage edge cases better 
than single-method pipelines (12, 15), and (3) 
privacy-preserving designs (federated learning, 
differential privacy) should be integrated early in 
pipeline design to avoid later rework (20, 19).

Data Security — Privacy, Access Control, and 
Distributed Ledgers

Our security evaluation examined how 
differential privacy, masking, and a consortium 
blockchain can provide provenance, tamper 
evidence, and controlled access—goals consistent 
with published proposals on ledger-based 
EHR governance (e.g., Stamatellis et al.) (21). 
The literature likewise highlights the practical 
trade-offs of blockchain deployments—most 
notably computational/storage overhead and the 
need to design appropriate on-chain/off-chain 
responsibilities (14, 22). Work on sharding and 
other scalability techniques suggests promising 
mitigations for these issues  (14).

Combining blockchain with federated learning 
and differential privacy (as other studies have 
explored) offers a path toward auditability without 
centralizing sensitive records, but it requires 
careful orchestration: privacy mechanisms must 
be tuned to avoid undue loss in model utility, and 
ledger operations must avoid becoming system 
bottlenecks (19, 20). Prior work supports these 
observations and suggests governance frameworks 
and technical partitioning as important design 
considerations (20, 23).

Clinical and Operational Implications
Improved integration reduces the risk of 

incomplete or inconsistent records entering 
clinical workflows, which can accelerate and 
improve decision-making (24). Strong security 
and auditable logs can bolster stakeholder trust 
and regulatory compliance (25). For deployments, 
planners should evaluate resource constraints 
(compute, storage, network) and choose 
appropriate trade-offs (e.g., amount of on-chain 
logic, off-chain storage, and privacy-noise budgets) 
informed by the existing literature (14, 22).

Limitations and Suggestions for Future Research
A key limitation is the use of synthetic, 

simulated multicenter data to permit controlled 
integration and security testing without exposing 
real patient data. While synthetic data enables 
reproducible experimentation (12, 20), it cannot 
fully capture the idiosyncrasies and systematic 
biases of operational EHR systems; thus 
external validation on real multisite EHR data is 
necessary to determine generalizability (17, 20). 
Computational demands of IFCA and blockchain 
components may limit adoption by smaller or 
resource-constrained institutions; evaluating 
lightweight ledger approaches (for example, 
sharding) and optimized IFCA implementations 
is recommended (14, 26). Future work should 
also explore adaptive privacy–utility trade-
offs (e.g., tuning differential-privacy budgets in 
federated contexts), broader governance models 
for consortiums, and deployment studies that 
measure clinical impact in real operational 
environments (19, 20, 27).

Conclusion
This study demonstrated that the Irregular Fuzzy 
Cellular Automata (IFCA) model and blockchain 
technology can effectively address data 
integration and privacy challenges in electronic 
health record (EHR) systems. IFCA achieved 
a 92% accuracy rate and faster processing, 
handling complex and heterogeneous data better 
than XGBoost and LightGBM. Additionally, data 
exchange standards like FHIR and blockchain 
technology enabled a 94% data exchange success 
rate and 95% security. In simple terms, this means 
a system that quickly and accurately integrates 
hospital data while keeping patient information 
highly secure, which is invaluable for hospitals 
and patients alike.

However, using synthetic data instead of real-
world data and high computational costs are 
limitations that need addressing. We recommend 
future research focus on real-world datasets and 
cost-effective methods like federated learning to 
make these solutions practical. This study marks a 
significant step toward efficient and secure digital 
health systems, paving the way for improved 
healthcare through innovative technologies.
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