| تعداد نشریات | 20 |
| تعداد شمارهها | 1,237 |
| تعداد مقالات | 11,265 |
| تعداد مشاهده مقاله | 79,763,820 |
| تعداد دریافت فایل اصل مقاله | 116,361,182 |
A Model for Process Control in Agile Supply Chain Networks Using Artificial Neural Networks | ||
| Health Management & Information Science | ||
| دوره 12، شماره 4، دی 2025، صفحه 267-273 اصل مقاله (859.59 K) | ||
| نوع مقاله: Original Article | ||
| شناسه دیجیتال (DOI): 10.30476/jhmi.2025.108149.1306 | ||
| نویسندگان | ||
| Alireza Aliasgharzadeh؛ Mahmood Mohammadi* ؛ Hassan Mehrmanesh | ||
| Department of Industrial Management, Islamic Azad University, Tehran Central Branch, Tehran, Iran | ||
| چکیده | ||
| model to enhance agility in supply chain networks, focusing on optimizing decision-making under demand fluctuations and cost constraints. Methods: A quantitative descriptive design was employed, utilizing cluster sampling (n=384) from a manufacturing company’s customer base. The ANN model integrated key variables (e.g., raw material flow, production volume, storage capacity) and was tested via sensitivity analysis to evaluate the impacts of production cost, service level, and factory capacity changes on objective function values. Results: The model significantly improved supply chain agility, enabling a dynamic response to demand shifts. A 111% production cost variation altered costs by ±15.7%, while a 91% capacity reduction rendered the model infeasible. A 411% demand surge disrupted service levels (91%), highlighting capacity constraints. Flexibility indicators (e.g., production adaptability) emerged as critical agility drivers. Conclusion: The ANN-based model optimizes supply chain performance, particularly in healthcare contexts where responsiveness and cost efficiency are paramount. Practical recommendations include workforce skill development, just-in-time production systems, and enhanced supplier IT integration. | ||
تازه های تحقیق | ||
Alireza Aliasgharzadeh (Google Scholar) Mahmood Mohammadi (Google Scholar) | ||
| کلیدواژهها | ||
| Process Control؛ Agile Supply Chain؛ Artificial Neural Network | ||
| مراجع | ||
|
1. Nurjanni KP, Carvalho MS, Costa L. Green supply chain design: A mathematical modeling approach based on a multi-objective optimization model. International journal of production economics. 2017;183:421-32. doi: 10.1016/j.ijpe.2016.08.028.
2. Mohanty R, Sahoo G, Dasgupta J. Identification of risk factors in globally outsourced software projects using logistic regression and ANN. International Journal of Sup Chain Mgt. 2012;1:2-11.
3. Seyed Hosseini M, Asadi Nia S. Production and Service Management for Executive Managers. Vol. 1. Tehran: Islamic Azad University, Science and Research Branch; 2015. Persian.
4. Naslund D, Williamson S. What is management in supply chain management?-a critical review of definitions, frameworks and terminology. Journal of Management Policy and Practice. 2010;114(4):11-28.
5. Azadeh A, Sheikhahshahi M, Neghab AP, Asadzadeh SM, editors. Modeling and Optimization of a Supply Chain Loop's Performance by an Integrated Neural Network-Fuzzy Regression-Ridge Regression Approach. 2010 Fourth UKSim European Symposium on Computer Modeling and Simulation; 2010: IEEE. doi: 10.1109/EMS.2010.45.
6. Gumus AT, Guneri AF, Keles S. Supply chain network design using an integrated neuro-fuzzy and MILP approach: A comparative design study. Expert Systems with Applications. 2009;36(10):12570-7. doi: 10.1016/j.eswa.2009.05.034.
7. Altiparmak F, Gen M, Lin L, Karagdan I. A steady-state genetic algorithm for multi-product supply chain network design. Computers & industrial engineering. 2009;56(2):521-37. doi: 10.1016/j.cie.2007.05.012.
8. Wang F, Lai X, Shi N. A multi-objective optimization for green supply chain network design. Decision support systems. 2011;51(2):262-9. doi: 10.1016/j.dss.2010.11.020.
9. Zandhesami H, Rajabzadeh A, Toloei A. Factors Affecting Supply Chain Agility. Iranian Journal of Trade Studies. 2009;13(51):121-61.
10. Swafford PM, Ghosh S, Murthy N. Achieving supply chain agility through IT integration and flexibility. International journal of production economics. 2008;116(2):288-97. doi: 10.1016/j.ijpe.2008.09.002.
11. Speckemeier C, Pahmeier K, Trocchi P, Schuldt K, Lax H, Nonnemacher M, et al. One-year follow-up healthcare costs of patients diagnosed with skin cancer in Germany: a claims data analysis. BMC Health Serv Res. 2022;22(1):771. doi: 10.1186/s12913-022-08141-9.
12. Gilaninia S, Taleghani M, Mousavian SJ, Tajani TK, Ghoreishi SM, Shahidi SF, et al. Comparative study of lean and agile supply chain management along with the optimal model presentation of agile supply chain management. Arabian Journal of Business and Management Review (Kuwait Chapter). 2011;1(4):46-56.
13. Christopher M, Towill D. An integrated model for the design of agile supply chains. International Journal of Physical Distribution & Logistics Management. 2001;31(4):235-46. doi: 10.1108/09600030110394914.
14. Yusuf YY, Gunasekaran A, Adeleye EO, Sivayoganathan K. Agile supply chain capabilities: Determinants of competitive objectives. European Journal of Operational Research. 2004;159(2):379-92.
15. Swafford PM, Ghosh S, Murthy N. The antecedents of supply chain agility of a firm: scale development and model testing. Journal of Operations management. 2006;24(2):170-88. doi: 10.1016/j.jom.2005.05.002. | ||
|
آمار تعداد مشاهده مقاله: 218 تعداد دریافت فایل اصل مقاله: 102 |
||