-
Jalloul R, Chethan HK, Alkhatib R. A Review of Machine Learning Techniques for the Classification and Detection of Breast Cancer from Medical Images. Diagnostics (Basel). 2023;13(14). doi: 10.3390/diagnostics13142460.
-
Jakkaladiki SP, Maly F. An efficient transfer learning based cross model classification (TLBCM) technique for the prediction of breast cancer. PeerJ Comput Sci. 2023;9:e1281. doi: 10.7717/peerj-cs.1281.
-
Ekici S, Jawzal H. Breast cancer diagnosis using thermography and convolutional neural networks. Med Hypotheses. 2020;137:109542. doi: 10.1016/j.mehy.2019.109542.
-
Tsietso D, Yahya A, Samikannu R, Tariq MU, Babar M, Qureshi B, et al. Multi-input deep learning approach for breast cancer screening using thermal infrared imaging and clinical data. IEEE Access. 2023;11:52101-16. doi: 10.1109/ACCESS.2023.3280422.
-
Ensafi M, Keyvanpour MR, Shojaedini SV. ABT: a comparative analytical survey on Analysis of Breast Thermograms. Multimedia Tools and Applications. 2024;83(18):53293-346. doi: 10.1007/s11042-023-17566-1.
-
Mashekova A, Zhao Y, Ng EY, Zarikas V, Fok SC, Mukhmetov O. Early detection of the breast cancer using infrared technology–A comprehensive review. Thermal Science and Engineering Progress. 2022;27:101142. doi: 10.1016/j.tsep.2021.101142.
-
Wen X, Guo X, Wang S, Lu Z, Zhang Y. Breast cancer diagnosis: A systematic review. Biocybernetics and Biomedical Engineering. 2024;44(1):119-48. doi: 10.1016/j.bbe.2024.01.002.
-
Ensafi M, Keyvanpour MR, Shojaedini SV. A New method for promote the performance of deep learning paradigm in diagnosing breast cancer: improving role of fusing multiple views of thermography images. Health Technol (Berl). 2022;12(6):1097-107. doi: 10.1007/s12553-022-00702-6.
-
Resmini R, Faria da Silva L, Medeiros PRT, Araujo AS, Muchaluat-Saade DC, Conci A. A hybrid methodology for breast screening and cancer diagnosis using thermography. Comput Biol Med. 2021;135:104553. doi: 10.1016/j.compbiomed.2021.104553.
-
Nogales A, Perez-Lara F, García-Tejedor ÁJ. Enhancing breast cancer diagnosis with deep learning and evolutionary algorithms: A comparison of approaches using different thermographic imaging treatments. Multimedia Tools and Applications. 2024;83(14):42955-71. doi: 10.1007/s11042-023-17281-x.
-
Singh D, Singh AK. Role of image thermography in early breast cancer detection- Past, present and future. Comput Methods Programs Biomed. 2020;183:105074. doi: 10.1016/j.cmpb.2019.105074.
-
Tariq M, Iqbal S, Ayesha H, Abbas I, Ahmad KT, Niazi MFK. Medical image based breast cancer diagnosis: State of the art and future directions. Expert Systems with Applications. 2021;167:114095. doi: 10.1016/j.eswa.2020.114095.
-
Bhatt C, Kumar I, Vijayakumar V, Singh KU, Kumar A. The state of the art of deep learning models in medical science and their challenges. Multimedia Systems. 2021;27(4):599-613. doi: 10.1007/s00530-020-00694-1.
-
Nikoupour M, Keyvanpour MR, Shojaedini SV. A robust framework for epileptic seizure diagnosis: Utilizing gru-cnn architectures in eeg signal analysis. 2024 20th CSI International Symposium on Artificial Intelligence and Signal Processing (AISP). 2024. doi: 10.1109/AISP61396.2024.10475276.
-
Sathish D, Kamath S, Prasad K, Kadavigere R. Role of normalization of breast thermogram images and automatic classification of breast cancer. The Visual Computer. 2019;35:57-70. doi: 10.1007/s00371-017-1447-9.
-
Santana MAd, Pereira JMS, Silva FLd, Lima NMd, Sousa FNd, Arruda GMSd, et al. Breast cancer diagnosis based on mammary thermography and extreme learning machines. Research on Biomedical Engineering. 2018;34:45-53. doi: 10.1590/2446-4740.05217.
-
Dey A, Ali E, Rajan S. Bilateral symmetry-based abnormality detection in breast thermograms using textural features of hot regions. IEEEOpen Journal of Instrumentation and Measurement. 2023;2:1-14. doi: 10.1109/OJIM.2023.3302908.
-
Mishra V, Rath S, Rath SK. Local and Global Thresholding-Based Breast Cancer Detection Using Thermograms. In: Machine Learning and Computational Intelligence Techniques for Data Engineering. MISP. Lecture Notes in Electrical Engineering. 2022;998. doi: 10.1007/978-981-99-0047-3_67.
-
Gonzalez-Leal R, Kurban M, López-Sánchez L, Gonzalez F. Automatic breast cancer detection on breast thermograms. 15th Quantitative InfraRed Thermography Conference. 2020. doi: 10.21611/qirt.2020.100.
-
Razzak MI, Naz S, Zaib A. Deep learning for medical image processing: Overview, challenges and the future. Classification in BioApps: Automation of decision making. 2017:323-50. doi: 10.1007/978-3-319-65981-7_12.
-
Anwar SM, Majid M, Qayyum A, Awais M, Alnowami M, Khan MK. Medical Image Analysis using Convolutional Neural Networks: A Review. J Med Syst. 2018;42(11):226. doi: 10.1007/s10916-018-1088-1.
-
AlFayez F, El-Soud MWA, Gaber T. Thermogram breast cancer detection: A comparative study of two machine learning techniques. Applied Sciences. 2020;10(2):551. doi: 10.3390/app10020551.
-
Tello-Mijares S, Woo F, Flores F. Breast Cancer Identification via Thermography Image Segmentation with a Gradient Vector Flow and a Convolutional Neural Network. J Healthc Eng. 2019;2019:9807619. doi: 10.1155/2019/9807619.
-
Al Husaini MAS, Habaebi MH, Hameed SA, Islam MR, Gunawan TS. A systematic review of breast cancer detection using thermography and neural networks. IEEE Access. 2020;8:208922-37. doi: 10.1109/ACCESS.2020.3038817.
-
Mishra S, Prakash A, Roy SK, Sharan P, Mathur N. Breast cancer detection using thermal images and deep learning. 2020 7th International Conference on Computing for Sustainable Global Development (INDIACom). 2020:211-6. doi: 10.1109/ACCESS.2020.3038817.
-
Mohamed EA, Rashed EA, Gaber T, Karam O. Deep learning model for fully automated breast cancer detection system from thermograms. PloS one. 2022;17(1):e0262349. doi: 10.1371/journal.pone.0262349.
-
Morid MA, Borjali A, Del Fiol G. A scoping review of transfer learning research on medical image analysis using ImageNet. Computers in biology and medicine. 2021;128:104115.
-
Dey S, Roychoudhury R, Malakar S, Sarkar R. Screening of breast cancer from thermogram images by edge detection aided deep transfer learning model. Multimed Tools Appl. 2022;81(7):9331-49. doi: 10.1007/s11042-021-11477-9.
-
Davies S, Jacob J. Novel Algorithms for Early Cancer Diagnosis Using Transfer Learning with MobileNetV2 in Thermal Images. KSII Transactions on Internet & Information Systems. 2024;18(3). doi: 10.3837/tiis.2024.03.003.
-
Alshehri A, AlSaeed D. Breast cancer diagnosis in thermography using pre-trained vgg16 with deep attention mechanisms. Symmetry. 2023;15(3):582. doi: 10.3390/sym15030582.
-
Alshehri A, AlSaeed D. Breast cancer detection in thermography using convolutional neural networks (cnns) with deep attention mechanisms. Applied Sciences. 2022;12(24):12922. doi: 10.3390/app122412922.
-
Tiwari D, Dixit M, Gupta K. Breast cancer-caps: a breast cancer screening system based on capsule network utilizing the multiview breast thermal infrared images. Turkish Journal of Electrical Engineering and Computer Sciences. 2022;30(5):1804-20. doi: 10.55730/1300-0632.3906.
-
Silva L, Saade D, Sequeiros G, Silva A, Paiva A, Bravo RdS, et al. A new database for breast research with infrared image. Journal of Medical Imaging and Health Informatics. 2014;4(1):92-100. doi: 10.1166/jmihi.2014.1226.
-
[online]: Available from: http://visual.ic.uf.br/
-
Houssein EH, Emam MM, Ali AA, Suganthan PN. Deep and machine learning techniques for medical imaging-based breast cancer: A comprehensive review. Expert Systems with Applications. 2021;167:114161. doi: 10.1016/j.eswa.2020.114161.
-
Tsietso D, Yahya A, Samikannu R. A review on thermal imaging‐based breast cancer detection using deep learning. Mobile Information Systems. 2022;2022(1):8952849. doi: 10.1155/2022/8952849.
-
Zuluaga-Gomez J, Al Masry Z, Benaggoune K, Meraghni S, Zerhouni N. A CNN-based methodology for breast cancer diagnosis using thermal images. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization. 2021;9(2):131-45. doi: 10.1080/21681163.2020.1824685.
-
Farooq MA, Corcoran P. Infrared imaging for human thermography and breast tumor classification using thermal images. 2020 31st Irish signals and systems conference (ISSC). 2020:1-6.
-
Chaves E, Goncalves CB, Albertini MK, Lee S, Jeon G, Fernandes HC. Evaluation of transfer learning of pre-trained CNNs applied to breast cancer detection on infrared images. Appl Opt. 2020;59(17):E23-E8. doi: 10.1364/AO.386037.
-
Firouzmand M, Majidzadeh K, Jafari M, Haghighat S, Esmaeili R, Moradi L, et al. A Framework for Promoting Passive Breast Cancer Monitoring: Deep Learning as an Interpretation Tool for Breast Thermograms. Iranian Journal of Medical Physics. 2024;21(4):237-48. doi: 10.22038/ijmp.2023.71683.2268.
-
Mammoottil MJ, Kulangara LJ, Cherian AS, Mohandas P, Hasikin K, Mahmud M. Detection of Breast Cancer from Five-ViewThermal Images Using Convolutional Neural Networks. J Healthc Eng. 2022;2022:4295221. doi: 10.1364/AO.386037.
-
Rautela K, Kumar D, Kumar V. An interpretable network to thermal images for breast cancer detection. 2022 International Conference on Electrical, Computer, Communications and Mechatronics Engineering (ICECCME). 2022. doi: 10.1109/ICECCME55909.2022.9987808.
-
Kiymet S, Aslankaya MY, Taskiran M, Bolat B. Breast cancer detection from thermography based on deep neural networks. 2019 Innovations in Intelligent Systems and Applications Conference (ASYU). 2019. doi: 10.1109/ASYU48272.2019.8946367.
-
Bohlouli M, Keyvanpour MR, Shojaedini SV. Enhancing Breast Cancer Detection from Thermographic Images: A Hybrid Approach Using Transfer Learning and Generative Adversarial Networks. 2024 10th International Conference on Web Research (ICWR). 2024:27-31. doi: 10.1109/ICWR61162.2024.10533359.
-
Gogoi UR, Bhowmik MK, Ghosh AK, Bhattacharjee D, Majumdar G. Discriminative feature selection for breast abnormality detection and accurate classification of thermograms. 2017 international conference on innovations in electronics, signal processing and communication (IESC). 2017:39-44. doi: 10.1109/IESPC.2017.8071861.
-
Lessa V, Marengoni M. Applying artificial neural network for the classification of breast cancer using infrared thermographic images. International conference on computer vision and graphics. 2016:429-38. doi: 10.1007/978-3-319-46418-3_38.