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Introduction 
ancer is one of the deadliest diseases in 
the world, according to the World Health 

Organization (WHO) (1). A cancerous 
tumor is a growth of abnormal cells that can be 
benign or malignant (2). Cancer types differ in 

their location and degree of severity. More than 
100 types of cancer are named based on the organ 

or tissue (3). 
Breast cancer is one of the most common types 

of cancer. The use of different imaging techniques 
makes detection easier and reduces mortality 
rates for this type of cancer (4). Several different 
screening procedures are used to detect breast 
cancer, including mammography, histopathology, 
ultrasound imaging, and thermography. 
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The most common method of screening for 
breast cancer is mammography (5). However, 
this method has several disadvantages, including 
the requirement of expensive equipment (6) 
and its low accuracy for women with dense 
breasts. Radiation used during mammography 
also increases the risk of breast cancer, as 
some patients complain of anxiety and pain 
caused by compression of the breast area (7, 8). 
Histopathology is a standard screening method 
in which a pathologist examines a tissue sample 
by taking microscopic images in the laboratory. 
This method may be limited in its utility because 
of its invasive nature and dependence upon 
physician expertise. Furthermore, this method is 
expensive and time-consuming (9). Ultrasound 
imaging  is  another  screening  modality  for 
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breast cancer, which penetrates the breast with 
sound waves that are safer than X-rays (9). This 
method’s low image contrast and low sensitivity 
make it complementary to mammography (7). 
Due to its non-invasive, painless, and low-cost 
nature, thermography has gained popularity 
among researchers in recent years (10). This 
method detects breast lesions by measuring 
skin temperature distribution (10). Cancer cells 
have a higher metabolic rate than healthy 
tissues, which results in higher temperatures (6). 
Thermograms are created by converting heat 
emitted from the breast into visual information 
(5). Any woman of any age can use thermal 
imaging for breast cancer screening, even if their 
breasts are dense (11). 

The manual processing of thermograms 
requires expertise from physicians and is time-
consuming and tedious. Also, poor quality 
and noise may reduce diagnostic accuracy 
and increase unnecessary biopsies (12). Recent 
developments in computer processing capacity, 
machine learning algorithms, and GPU-based 
cloud computing resources have contributed 
to the success of computer-aided diagnosis 
systems in interpreting breast thermographic 
images (8). The majority of published articles 
on thermographic imaging for breast cancer 
diagnosis use traditional machine learning. These 
methods involve manually extracting features 
such as pixel value, texture, orientation, and 
shape by a data expert. These systems perform 
well, providing features that can be accurately 
identified or extracted (13). Recently, deep 
learning has received much attention in the field 
of computer-aided disease diagnosis (14). A deep 
learning algorithm can automatically extract 
features from input data (5). 

The  article  (15)  investigates  image 
normalization and automatic Classification. After 
normalization, features from thermogram images 
were extracted, including statistical measures 
and texture characteristics. Machine learning 
classifiers, such as Support Vector Machines 
(SVMs) and Artificial Neural Networks (ANNs), 
were trained for automatic Classification. The 
article (9) proposes a hybrid method combining 
dynamic and static infrared thermography for 
abnormal screening and breast cancer diagnosis. 
By clustering time series data, the authors screened 
the breast, identifying malignant tumors through 
texture feature extraction; however, this method 

has a high execution time. In the article (16), 
Zernike and Haralick’s features are extracted 
based on the geometry and texture of cancerous 
breast tissue. The authors evaluated various 
classifiers, including ANN and decision trees, 
for classifying cysts and benign and malignant 
lesions; however, this resulted in low sensitivity 
values for breast cancer detection. The study in 
(17) analyzed bilateral symmetry between the left 
and right breasts by comparing thermal patterns 
and hot spot characteristics, extracting texture 
features via Gray-Level Co-occurrence Matrices 
(GLCMs) to train a machine learning classifier 
(e.g., SVM) for detecting abnormalities. Similarly, 
researchers (18) introduced a dual thresholding 
approach, extracting features like area, 
perimeter, and temperature differences to classify 
thermograms as normal or abnormal using SVM. 
In (19), diverse feature extraction techniques, 
including texture, thermal asymmetry, and 
shape features, were evaluated with classifiers 
like SVM, Random Forests (RF), and Neural 
Networks. Traditional methods rely on manual 
feature extraction, which is challenging, while 
deep learning, particularly Convolutional Neural 
Networks (CNNs), automates feature learning 
and has gained prominence in medical imaging 
(20, 21). 

The  study  (22)  compared  two  machine 
learning techniques - CNNs and SVMs - for 
detecting breast cancer using thermograms. 
The CNN-based approach used a CNN to 
extract relevant features from the thermograms 
automatically. The SVM-based approach involved 
manually engineering features like geometrical 
and textural, which were then used to train an 
SVM classifier to categorize the thermograms. 
The article (3) reports the development of a 
software system that can automatically analyze 
thermograms to detect breast cancer. In the article 
(23), the performance of CNN in detecting breast 
cancer in thermograms is compared to some 
other classification techniques, including Tree 
Random Forest (TRF), Multi-Layer Perceptron 
(MLP), and Bayes Network (BN). As a result of 
this study, CNN provided more accurate results 
than the other alternative algorithms. However, 
based on (24), this method is sensitive to noisy 
and irrelevant features. In (25), the thermograms 
are classified using CNN after applying 
preprocessing and segmentation techniques. The 
key innovation in the (26) approach is the use of 
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deep learning techniques, specifically CNNs, for 
both the segmentation of breast regions and the 
Classification of abnormalities. 

CNNs require extensive training data due to 
their high number of parameters, but public and 
labeled datasets for medical applications, especially 
breast cancer detection via thermograms, are 
limited. Transfer learning with pre-trained models 
addresses this challenge (27). Studies highlight 
using models such as ResNet34, ResNet50, 
DenseNet121, MobileNetV2, and VGG16. 

ResNet34 and ResNet50 achieved the best 
performance in (26), while DenseNet121 (28) 
utilized edge detection (Prewitt and Roberts) for 
feature extraction in a three-channel architecture. 
MobileNetV2 (29) was fine-tuned with thermal 
images for Classification. The article (30) utilized 
the pre-trained VGG16 model as the backbone of 
their breast cancer diagnosis system. To enhance 
the feature extraction capabilities of the VGG16 
model, the researchers incorporated deep attention 
mechanisms into the network. Researchers (31) 
expanded the CNN model with deep attention 
mechanisms to enhance the network’s ability 
to extract features. The authors of (32) proposed 
a novel breast cancer screening system based on 
a Capsule Network (Caps Net) architecture. The 
Caps Net model was designed to take the multi-
view (front, left, and right) breast thermal 
infrared images as input. The model fused the 
information from the different views to make a 
more informed breast cancer screening decision. 

Thermograms for breast cancer detection 
can be obtained from five views: frontal and 
two laterals on each side. Most studies focus on 
frontal views, often overlooking the additional 
information multiple perspectives provide. Few 

Table 1: Notations and variables used in the proposed method 

studies have examined the interdependencies 
between features across different views. A 
dynamic model, DBCD-MIT, is proposed to 
address this gap for enhanced breast cancer 
detection using multi-input thermograms. 

DBCD-MIT: The Proposed Method 
The diagnosis in single-input systems is based 

only on one of the sets of thermograms obtained 
from the patient. Therefore, thermograms taken 
from other patient views are not considered 
when making the final decision. The neglected 
thermograms may contain valuable information 
that may otherwise be overlooked in the single-
input system. Consequently, the performance of 
the single-input system depends on the single-
input thermogram, which is often compromised 
by various factors, such as poor data quality. It 
is possible to consider a system that increases 
the reliability of the final decision by combining 
the features of all multi-inputs received from 
the patient and deciding based on the resulting 
combination. According to this approach, 
the decision is made based on all the patient’s 
thermograms. Due to the greater number of 
inputs in the multi-input system, this system is 
more noise-resistant. 

Furthermore, in the single-input system, a 
A patient’s thermogram can be identified from 
one view of a healthy person and another view of 
a sick person. This problem is not present with 
the multi-input system; therefore, the rate of 
false positives and negatives is reduced, and 
reliability is improved. The main structure of the 
proposed DBCD-MIT is shown in Figure 1. 
Table 1 defines some of the notations used to 
describe the proposed system. According to 
Figure 1, t h e  inputs of DBCD-MIT 

 
DBCD-MIT Dynamic model for Breast Cancer Detection using Multi-Input Thermograms 

 
FLL Feature vector of the Lateral Left 45 ° view 

FLR Feature vector of the Lateral Right 45 ° view 

 
FE Feature Extractor 

WFF Weighted Feature vector of the Fontal view 

 
WFSL The Weighted Feature vector of the Side-view Left 90 ° view 

WFSR Weighted Feature vector of the Side-view Right 90 ° view 

 

Symbol Description 

FF Feature vector of the Fontal view 

FSR The Feature vector of the Side-view Right 90 ° view 

WFLL Weighted Feature vector of the Lateral Left 45 ° view 

TWF Total of Weighted Features 

FSL The Feature vector of the Side-view Left 90 ° view 

FW Feature Weighting 

WFLR Weighted Feature vector of the Lateral Right 45 ° view 
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Figure 1: General structure of the DBCD-MIT method 

consist of patients’ thermograms in five views, 
such as frontal, lateral left 45 °, side-view left 90 
°, lateral right 45 °, and side-view right 90 °, and 
output is a patient’s label (healthy or sick). As 
specified in Figure 1, DBCD-MIT involves four 
basic components: Feature Extractor (FE) block, 
Feature Weighting (FW) block, Fusion, and 
Classification. 

During the first step, the features of each 
patient’s thermograms are extracted separately. 
Then, in this system, each thermogram is 
weighed according to its usefulness. This feature 
set is then fused in the next step. Upon fusion 
of the features, a single feature is obtained, and 
classification is made according to it, and the 
patient’s thermograms are predicted at the end. 
Below are the details of the methods used in each 
component described in Figure 1. 

Feature Extractor 
The features of each thermogram are 

extracted in this part of the proposed DBCD- 
MIT system. An illustration of the internal 
structure of the Feature Extractor (FE) block 
can be found in Figure 2. As can be seen from 
Figure 2, this block’s inputs and outputs are the 
patient’s thermograms and feature vectors in 

different views, respectively. First, the necessary 
preprocessing is applied to extract the feature. 
An automatic feature extraction process is then 
carried out using CNNs. 

Preprocessing 
An important step in the automatic processing 

of medical images is the preprocessing of the 
input data. This step aims to improve the image 
quality, decrease noise, and remove unwanted 
portions of the image. As a result of the 
preprocessing of data, the results of subsequent 
processes are improved (13). This study used some 
preprocessing techniques in order to achieve 
this goal. The first step is to remove blurred and 
bandaged thermograms. Blurred thermograms 
may not provide fine and original details. A few 
thermograms were also bandaged due to surgical 
reasons. This cover may damage the thermal 
pattern of the breast. Feature extraction occurs 
following the Output of the Preprocessing (OP) 
stage, as shown in Figure 2. 

CNN 
This stage is represented learning, which 

facilitates extracting features from various views. 
Since the patient’s thermograms from different 

 

 
Figure 2: The internal structure of the FE block 
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Table 2: Details of the utilized deep models  

Network Structure Parameters 

VGG16 13 convolution 

5 max pooling 

138,357,544 

VGG19 16 convolution 

5 max pooling 

143,667,240 

InceptionV3 48 layers deep 23,851,784 

Xception 71 layers deep 22,910,480 

ResNet50 50 layers deep 25,636,712 

DenseNet121 121 layers deep 8,062,504 

 

views contain additional information, and 
learning the features of this system will produce 
more comprehensive data from the patient than 
the single-input system. Figure 2 illustrates how 
a convolutional neural network extracts the 
features of each thermogram in the 
corresponding view. To extract features, transfer 
learning is used. The transfer learning concept is 
further applied as an efficient method since 
CNN requires extensive data for automatic 
feature extraction (5). VGG16, VGG19, 
InceptionV3, Xception, ResNet50, and 
DenseNet121 are the networks used in this 
experiment. The internal structure of the tested 
networks is shown in Table 2. 

Feature Weighting 
Figure 1 illustrates that the Feature Weighting 

(FW) block’s inputs is the FE block’s outputs. The 
purpose of the FW block is to identify features 
that have a greater potential for discrimination. 
Thus, the output of this block is a dynamically 
weighted vector of input features. An illustration 
of the internal structure the FW block is found in 
Figure 3. According to Figure 3, the FW block is 

divided into several sub-blocks. The sub-blocks in 
different views correspond to the feature vectors. 

Human vision consists of selectively focusing 
on a part of information at just the right 
time and place while ignoring other visually 

apparent information. The filters in a traditional 
convolutional neural network are stable after 
training. However, this study introduces a new 
framework where filters can be dynamically 
generated for each view of the thermogram 

input. The sub-block objective is to identify 
helpful features of the relevant thermogram and 

to design new filters based on those features. 
After this step, the primary features are 

filtered according to the produced filters. Feature 
maps are read from the input in different views 
and then sent to the next stage as filtered feature 
vectors. Figure 3 illustrates each sub-block 
containing two sections called Filter Generator 
and Filtering. 

Filter Generator 
According to the input, a special filter is 

produced in the Filter Generator (FG) block. The 

 

 
Figure 3: The internal structure of the FW block 
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The relationship between the input features may 
be analyzed using this block, which examines 

how the features of different views can be used 
to diagnose whether a patient is healthy or sick. 

The block consists of the Global Average Pooling 
(GAP) layer, two fully connected layers, and a 
SoftMax function. Below is an explanation of 
how the filter is dynamically generated based on 
the features of each thermogram view. Initially, 

the GAP layer converts feature maps into feature 
vectors. Afterward, these features are fed into the 
first dense layer. Assuming that  is the feature 

vector obtained by applying the GAP layer for the 
input, we can display the output of the first 

dense layer as equation 1. 
(1) 

 
The output of  neuron of the first fully 

connected layer in the FG block may be 
calculated as equation 2: 

(2) 

The values and indicate the size of the output 

of the GAP layer and the bias of , 
respectively. Similarly, the neurons’ weights 

in the second fully connected layer ( ) are 
determined. A SoftMax function was also used to 
determine the importance value of each feature. 
During this stage, points are assigned to each 
feature to determine their relative importance. 

Therefore, the output of the  FG block output 
can be shown as equation 3. 

= (3) 

Filtering 
This section will dynamically apply the 

filter generated from the previous block to the 
features. Thus, important and practical features 
are identified. Figure 3 shows two inputs: 
the filter generated by the FG block and the 
feature maps obtained from the previous step. 
Additionally, GAP is used to generate feature 
vectors from feature maps. A layer containing 
the multiplication operator is used to apply the 
generated filter in the primary feature vector. 
Thus, the output of this block will be a weighted 
vector of features. Consequently, the output of 
the filtering sub-block may be viewed as equation 
4, in which  represents the Weighted 

Filtered feature Vector. In addition,  shows 
the matrix of primary features. 

(4) 

Fusion 
This block combines features from different 

views into a single one. The purpose of this 
section is to display the data comprehensively by 
using the additional information from several 
views. The output of the fusion block may be 
calculated as in equation 5. Here, 𝑊𝐹𝑉𝑖 
represents the weighted feature vector of the 𝑖𝑡ℎ 
view. This can be illustrated as follows by 
concatenating the features in the different views: 
𝑎𝑙𝑙 − 𝑊𝐹𝑉𝑆 = ℎ(𝑊𝐹𝑉1‚ …𝑊𝐹𝑉𝑖 ‚ … 𝑊𝐹𝑉5) (5) 

It is important to note that ℎ(. ) represents the 
function in the above relation. A concatenation 

function is used in this study to fuse 
The WFMs. 

Classification 
A significant purpose of this section is to 

determine the label that will be assigned to the 
patient. To perform binary Classification, this 
system utilizes three fully connected layers. To 
prevent overfitting, dropout layers are used next 
to fully connected layers. Figure 4 illustrates the 
internal structure of the classification system 
proposed for this study. 

 

Figure 4: The internal structure of the Classification 
 

 

Experiment 
Dataset 

The proposed algorithm was evaluated using a 
set of breast thermal images, referred to as DMR 
(33). DMR is a publicly available web platform 
that provides breast images for the detection of 
early stages of breast cancer (34). This collection 
includes thermal images and clinical data in 
which thermograms with a resolution of 640 x 
480 pixels are categorized into healthy and sick. 
The thermograms were obtained using a static 
and dynamic protocol. The imaging consisted of 
a frontal, two laterals of the left at 45° and 90°, 
and two side-views of the right at 45 ° and 90 ° as 
shown in Figure 5. 
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Figure 5: (a) Frontal (b) Lateral left45˚(c) Side-view left90˚ (d) Lateral right45˚ (e) Side-view right90˚ 

 

Experimental setup 
In experiments of this research, 410 

thermograms have been utilized; 205 of them 
belonged to healthy breasts, and the remaining 
205 thermograms belonged to sick breasts. 
The dataset contains 82 patients, each with 
five different views of their thermograms, as 
demonstrated in Table 3. 

A fourfold cross-validation strategy was 
utilized by splitting the dataset into four equal 
subsets. The learning models were implemented 
using TensorFlow, an open-source Python 
library for machine learning. Google Colab, a 
GPU framework provided by Google, was used 
to run the program. Table 4 illustrates details of 
the hyperparameters of the used models. 

Evaluation Measures 
Following the performance of a test, the 

obtained results may be interpreted in the 
following situations. The first case is about 

Table 3: Number of used thermograms 

thermograms correctly identified as sick by the 
model, which are called true positives (TPs). In 
addition, some cases were misdiagnosed as sick 
by the classifier, which is called false positives 
(FPs). In contrast, some cases were classified 
correctly as healthy by the classifier, which is 
referred to as true negatives (TN); finally, some 
cases were misdiagnosed by classifiers as healthy, 
which are referred to as false negatives (FN). The 
evaluation criteria used in the state-of-the-art 
works were also applied in this study to analyze 
the effectiveness of the proposed method (35). 

Accuracy (ACC): Based on equation 6, the 
accuracy parameter indicates how many samples 
were correctly identified (healthy and sick). 

(6) 

Precision (Pre): The precision of the model can 
be determined by the number of positive cases 
correctly predicted by the model using equation 7. 

(7) 

 Frontal Left 45 ̊  Left 90 ̊  Right45  ̊ Right 90 ̊  

Healthy 41 41 41 41 41 

Sick 41 41 41 41 41 

Total 82 82 82 82 82 

 

 
Table 4: Detailed of hyperparameters 

Adam 16 ReLu Binary_Crossentropy 
 

Optimizer Batch size Activation function at 

intermediate layers 

Loss function 
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Sensitivity (Sn): Using equation 8, this 
parameter indicates how many positive samples 
were correctly identified. 

(8) 

Specificity (Sp): Based on equation 9, this 
parameter represents the number of correctly 
identified negative samples. 

(9) 

F-score: The F-score is a measure of precision 
and sensitivity that considers the impact of adding 
more penalties, as shown in equation 10 (36). 

(10) 

Results 
Two tests have been designed and run to 

evaluate the proposed method. According to 
the authors’ previous study on breast cancer 
diagnosis using thermography, test 1 is designed 
to investigate the effect of dynamic extraction 
of the relationship between features in different 
views. Test 2 examines the proposed method 
based on deep models and different learning 
criteria mentioned in the previous section. 
The difference between the results of these two 
tests may be considered exactly in the sense of 

evaluating the performance of the proposed 
innovation of this article, which is the use of 
dynamic filtering in extracting the dependencies 
between different views and training the neural 
network with the help of these enriched data. In 
addition to these two tests, the proposed method 
has been compared with other methods for a 
more comprehensive evaluation and comparison. 
Finally, the proposed method is discussed. 

Test 1: The Effect of Dynamic Extraction of the 
Relationship between Features in Different Views 
The authors’ previous research (8) tested the idea 
of including five different views of thermograms 
without extracting their relationship. For this 
purpose, three networks, VGG16, InceptionV3, 
and DenseNet121, were trained and tested with 
the five views of the thermograms in raw form. 
Thus, the method mentioned is a basis for 
comparison with the proposed method in this 
article. Figure 6 shows the results of the first 
scenario, which is called the basic single input 
model, in the rest of the article. Figure 6-a shows 
thermograms of healthy patients incorrectly 
classified as sick by the model. Similarly, Figure 
6-b illustrates the thermograms of sick patients 
incorrectly identified as healthy. 

 

 
Figure 6: Examples of results of basic single input model: (a) false positive (b) false negative 
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Figure 7: Examples of results of the proposed DBCD-MIT model: (a) true negative, (b) true positive 
 

In contrast, Figure 7 demonstrates the results 
of the proposed method, which is called the 
DBCD-MIT model, in the rest of the article. 
Figure 7-a illustrates the prediction results of the 
proposed DBCD-MIT model for healthy people 
after they had been predicted sick previously. 
Similarly, Figure 7-b shows prediction results 
from the proposed DBCD-MIT model for sick 
patients previously predicted from the basic 
single input model as healthy. 

Comparing Figure 6 and Figure 7 
demonstrates that by applying the proposed 
method, many healthy individuals have been 

correctly diagnosed as healthy. Furthermore, 
the majority of sick people are also identified 
as sick. Meanwhile, one of the sick patients has 
been mistakenly identified as healthy. According 
to these results, the proposed method detects 
healthy and sick patients more accurately than 
the basic single-input model. 

Different labels may be predicted for 
different patient views in the basic single input 
model. Based on five thermograms provided 
by two healthy patients, Figure 8 illustrates the 
prediction results of both the basic single input 
model and the proposed DBCD-MIT model. 

 
Figure 8: Prediction of two healthy patients 
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Figure 9: Prediction of two sick patients 

As evident from the figure, three thermograms 
of the patient in the frontal, the lateral right 
45 °, and the side-view right 90 ° views were 
incorrectly classified as sick in the basic scheme. 
As another example, the side-view left 90 ° view 
of patient b is incorrectly identified as sick using 
the basic single input model. These two patients 
are correctly diagnosed as healthy under the 
proposed DBCD-MIT model, which means that 
all five thermograms in five views are predicted 
to be healthy. 

On the other hand, Figure 9 shows the 
prediction results of both the basic single input 
model and the proposed DBCD-MIT model 
when applied to five thermograms provided by 
two sick patients. It can be seen from the figure 
that in the basic single input model, three views 
of patient a, including the frontal, lateral left 
45 °, and side-view left 90 °, were incorrectly 
classified as healthy. As a result of the basic 
single input model, the side-view left 90 ° and 
side-view right 90 ° views of the patient b were 
incorrectly predicted to be healthy. The proposed 
DBCD-MIT model correctly diagnoses these two 
patients as sick, i.e., all five thermograms in five 
views are reported to be sick. 

Test 2: The Effect of Different Learning Models 
in the Proposed DBCD-MIT on the Evaluation 
Criteria 

Since this article focuses on a deep learning 

method, this section provides a performance 
comparison between our proposed method 
and other deep learning approaches. In light of 
this, we developed three deep models based on 
the model of basic single input presented in our 
previous article (8). Table 5 demonstrates the 
obtained results using the above criteria in this 
method. As previously mentioned, this study was 
conducted using fourfold cross-validation. 

Therefore, Table 5 shows the evaluation 
metrics for each fold of every examined network 
separately. According to Table 5, the average 
results for the fourfold cross-validation are 
relatively similar among the three examined 
networks. Given the importance of the 
sensitivity parameter in medical applications, the 
Xception model can be considered well-fitted. 
This network’s sensitivity is increased by 4% 
and 6% compared to InceptionV3 and VGG19 
architectures, respectively. Based on these 
findings, the Xception model exhibits a well- 
suited fit compared to another mode. 

Then, it was attempted to improve the results 
using the proposed DBCD-MIT model. It may 
be observed in Table 6 that the results obtained 
by using the proposed method are discussed in 
detail. DenseNet121 demonstrates a significant 
advantage over other structures in terms of 
correctness and concentration, as shown in the 
results obtained from this model. Consequently, 
this network has a sensitivity parameter higher 

 
Table 5: Result of three pre-trained networks in the basic single input model 

Fold InceptionV3 Xception VGG19 

ACC Pre Sn Sp F-score ACC Pre Sn Sp F-score ACC Pre Sn Sp F-score 

1 0.73 0.88 0.35 0.97 0.66 0.69 0.70 0.70 0.67 0.70 0.69 1 0.42 1 0.59 

2 0.91 0.91 0.93 0.90 0.91 0.85 0.81 0.90 0.80 0.85 0.84 0.86 0.83 0.86 0.84 

3 0.92 0.90 0.94 0.91 0.91 0.93 0.93 0.91 0.95 0.91 0.83 0.81 0.88 0.87 0.84 

4 0.85 0.80 0.96 0.71 0.87 0.87 0.91 0.81 0.92 0.85 0.91 0.86 0.95 0.88 0.91 

Ave 0.85 0.87 0.79 0.87 0.83 0.83 0.84 0.83 0.83 0.82 0.82 0.88 0.77 0.88 0.79 



Multi-input thermogram model for breast cancer detection 

Health Man & Info Sci, January 2025, 12(1) 51 

 

 

 
Table 6: Result of three pre-trained networks in the proposed DBCD-MIT model 

Fold VGG16 ResNet50 DeseNet121 

ACC Pre Sn Sp F-score ACC Pre Sn Sp F-score ACC Pre Sn Sp F-score 

1 0.98 1 0.97 1 0.98 0.88 0.89 0.91 0.95 0.90 0.95 0.90 1 0.90 0.94 

2 0.84 0.88 0.76 0.90 0.81 0.92 0.97 0.91 0.94 0.94 0.98 1 0.96 1 0.97 

3 0.90 0.91 0.91 0.88 0.91 0.84 0.67 1 0.76 0.80 0.90 1 0.84 1 0.91 

4 0.96 0.9 1 0.94 0.95 0.88 1 0.70 1 0.82 0.90 0.87 0.87 0.91 0.87 

Ave 0.92 0.93 0.91 0.93 0.92 0.88 0.88 0.88 0.88 0.87 0.93 0.94 0.92 0.95 0.93 
 

than those of both the VGG16 and ResNet50 
networks, resulting in a 1% and 4% increase, 
respectively, in sensitivity. Additionally, 
Densenet121 had fourfold improved results 
compared with VGG16 and ResNet50. 

As shown in Figure 10, the average obtained 
results indicate that the proposed DBCD-MIT 
model performs significantly better than the 
basic single input model. As a result of this 
scenario, it may be observed that using dynamic 
filters in combination with transfer learning to 
process each view of the thermograms separately 
can increase accuracy, precision, sensitivity, 
specificity, and F-score of 10%, 10%, 9%, 12%, 
and 11%, respectively, over a transfer learning 
model for all views of the thermogram. 

Comparison between the Proposed Method and 
other Methods 

In the previous section, a limited number 
of results from the proposed and alternative 
methods were visually presented in the form 
of various thermograms demonstrating the 
improvement brought about by the proposed 
method in this article. This section presents the 
numerical results of comprehensive tests on the 
entire dataset for both the proposed method 
and its alternatives, highlighting the significant 
improvements brought by the proposed method 
in this article. 

As previously mentioned, breast cancer 
detection using thermography can be classified 

 

 

Figure 10: The comparison between the basic single-input model 

and the proposed DBCD-MIT model 

 

into two categories: deep learning and traditional 
methods. In this section, the comparison is 
conducted between the proposed method and 
either deep learning-based or traditional feature-
based methods, which were previously published 
in this domain. As we used the DMR dataset in 
this study, the results were compared to those of 
articles that employed the same dataset. Table 7 
compares the proposed DBCD-MIT model and 
the deep-based methods, demonstrating that 
the proposed scheme leads to higher values for 
almost all parameters versus other methods. 
Compared to its closest alternative, the proposed 
method has a sensitivity and specificity gain of at 
least 1% and 2%, respectively. 

The introduction of this article mentions 
various methods for diagnosing cancer based on 

 
Table 7: Comparison of the proposed DBCD-MIT model with deep learning-based methods 

Method ACC Pre Sn Sp F-score 

(4) 0.90 0.93 0.93 0.83 - 

(37) 0.92 0.94 0.91 0.93 0.92 

(38) 0.80 0.71 0.83 0.77 0.76 

(39) 0.77 - 0.85 0.70 0.76 

(40) 0.80 0.88 0.86 0.86 0.87 

(41) 0.92 - - - - 

(42) 0.88 - - - - 

(43) 0.90 - 0.87 0.92 - 

Ours 0.93 0.94 0.92 0.95 0.93 
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Table 8: Comparison of the proposed DBCD-MIT model with some handcrafted-based methods 

Method ACC Sn Sp 

(15) 0.91 0.87 0.94 

(16) 0.73 0.78 0.88 

(44) 0.88 0.80 0.93 

(45) 0.85 0.87 0.83 

(46) 0.90 0.87 0.92 

Ours 0.93 0.92 0.95 

 

thermographic images that use feature extraction 
and traditional classifier methods. Due to this, the 
proposed method was compared with traditional 
methods that extract features manually, as 
shown in Table 8. Most of these methods utilize 
a segmentation technique to extract texture, 
statistical features, GLCM, Haralick, wavelet, 
HOG, etc., from thermograms. 

Discussion 
It has been noted before that manual processing 
of thermograms is both time-consuming and 
tedious, as well as requiring expertise from 
physicians. In recent years, computer-aided 
detection systems have become a reliable means 
of interpreting breast thermography images 
thanks to the development of machine learning 
algorithms. Obtaining significant results from the 
breast thermogram mainly involves extracting 
certain features and analyzing and comparing 
these features. Traditional techniques include 
manually extracting features and classifying 
them using machine learning algorithms. One of 
the main challenges of this approach is selecting 
the appropriate feature and Classification (5). 
Unlike traditional machine learning methods, 
deep learning can extract high-level features, even 
with a large amount of training data. To increase 
the effectiveness of the deep model, it is possible 
to fuse the related features of thermograms from 
different patient views. In this study, the primary 
objective was to develop a system with acceptable 
accuracy to detect breast cancer when fusing 
the information available in different views of 
thermograms. 

This study utilizes a dynamic DBCD-MIT 
method to identify and combine relevant 
features from five views of breast thermograms. 
This framework consists of four steps: after 
extracting each thermogram’s valuable features 
independently, the valuable features are weighted 
by dynamically generating a filter. A single 
feature vector can then be utilized as a basis for 

Classification by condensing useful features. 
Using deep learning, Table 7 compares the 

proposed and state-of-the-art algorithms. Even 
though the Sn parameter had a relatively low 
superiority in the study (4), the value of the Sp 
parameter differed significantly from that 
obtained by our method. Using the system 
presented in the study (4), multiple breast 
thermogram views are combined with 
corresponding clinical data for improved 
diagnosis accuracy. This superiority of 12% in 
the Sp parameter obtained by our method 
demonstrates the effectiveness of the proposed 
mechanism in identifying useful features through 
the dynamic generation of filters. 

The dynamic filtering approach employed in 
the DBCD-MIT model is central to its success. 
The system effectively filters out redundancies and 
emphasizes diagnostically relevant information 
by dynamically assigning weights to features 
from different thermogram views. This contrasts 
sharply with conventional single-view or static 
multi-view systems, which often fail to account 
for inter-view dependencies and redundancies, 
leading to suboptimal performance. It should 
be noted that the higher specificity obtained (39) 
results from an unbalanced dataset that has been 
utilized for training the model. Furthermore, 
in medical applications, sensitivity is the most 
important parameter; thus, the superiority of 
the results of the proposed method, with a 4% 
improvement in sensitivity against this 
particular alternative, is also justified. 

It is evident from Table 8 that the proposed 
The method is superior to handcrafted feature-
based schemes. Due to the lack of reported 
values in the references, the precision and F-
score parameters have been removed from this 
table. However, compared with other 
methods, the superiorities of sensitivity and 
specificity parameters belonging to DBCD-
MIT have been calculated in a range of 5-14% 
and 1-12%, respectively. Traditional 
handcrafted methods, reliant on feature 
extraction techniques such as 
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texture and shape analysis, achieved 78% and 
87% sensitivities. In comparison, the DBCD- 
MIT model consistently surpassed these figures, 
achieving sensitivities as high as 92% while 
maintaining high specificity. This demonstrates 
the limitations of handcrafted approaches 
in capturing the intricate, high-dimensional 
relationships inherent in thermographic data. 

Among deep learning models, those utilizing 
transfer learning frameworks such as ResNet50 
and DenseNet121 were outperformed by the 

DBCD-MIT model. Integrating dynamic filters 
in the proposed method provided a distinct edge, 
as evidenced by the superior performance metrics 
across multiple cross-validation  folds. The 
comparative advantage of DBCD-MIT over these 
models highlights the importance of dynamic, 
adaptive processing in complex diagnostic tasks. 

The advancements achieved by the DBCD- 
MIT model carry profound implications for 

clinical  practice.  The enhanced  sensitivity 
reduces the likelihood of missed cancer cases, a 

critical concern given the severe consequences of 
delayed diagnoses. High specificity, on the other 
hand, mitigates unnecessary anxiety and invasive 

procedures for patients, contributing to an 
improved overall patient experience. Moreover, 
the model’s reliance on thermography—a non- 
invasive,  radiation-free,  and cost-effective 
imaging modality—makes it particularly suitable 
for widespread screening, including in resource- 
limited settings where access to mammography 

and histopathology may be constrained. 

Conclusion 
This article proposed a new method to 
improve breast cancer diagnosis in multi- 
input thermographic images. In this method, 
dependency extraction between thermograms 
captured from several views in parallel with 
removing their redundancies was used to improve 
the distinguishing between healthy and sick 
samples. Dynamic filters were utilized to enrich 
the above information, which were constructed 
separately for each view. In the first and second 
tests of experiments, it was shown that fusing 
data in the proposed way improved the detection 
of breast cancer by up to 9% in sensitivity and up 
to 12% in specificity compared to a similar deep 
learning method in which the above processing 
was not used. In this way, the effectiveness of this 
data processing method in improving the results 

was proven. On the other hand, the comparison 
of the proposed method with the state-of-the-art 
methods that have a different approach from our 
proposed method also indicated the effectiveness 
of this technique in such a way that it achieved 
improvements of up to 14% and 25% for sensitivity 
and specificity compared to the known researches 
in this field. The above findings indicated that 
the proposed method is recommended as a part 
of the processing in different machine learning 
algorithms that are used to separate healthy and 
sick data based on multi-input thermograms 
due to its effective improvement in the quality of 
input data to the classifier. 
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