- Biasiori-Poulanges L, Lukić B, Supponen O. Cavitation cloud formation and surface damage of a model stone in a high-intensity focused ultrasound field. Ultrason Sonochem. 2024;102:106738. doi: 10.1016/j.ultsonch.2023.106738. PubMed PMID: 38150955. PubMed PMCID: PMC10765487.
- Moghimnezhad M, Shahidian A, Andayesh M. Multiphysics Analysis of Ultrasonic Shock Wave Lithotripsy and Side Effects on Surrounding Tissues. J Biomed Phys Eng. 2021;11(6):701-12. doi: 10.31661/jbpe.v0i0.1182. PubMed PMID: 34904067. PubMed PMCID: PMC8649164.
- Chen Y, Lin S, Xie X, Yi J, Liu X, Guo SW. Systematic review and meta-analysis of reproductive outcomes after high-intensity focused ultrasound (HIFU) treatment of adenomyosis. Best Practice & Research Clinical Obstetrics & Gynaecology. 2024;92:102433. doi: 10.1016/j.bpobgyn.2023.102433.
- Kung Y, Lan C, Hsiao MY, Sun MK, Hsu YH, Huang AP, et al. Focused shockwave induced blood-brain barrier opening and transfection. Sci Rep. 2018;8(1):2218. doi: 10.1038/s41598-018-20672-y. PubMed PMID: 29396523. PubMed PMCID: PMC5797245.
- Snipstad S, Vikedal K, Maardalen M, Kurbatskaya A, Sulheim E, Davies CL. Ultrasound and microbubbles to beat barriers in tumors: Improving delivery of nanomedicine. Adv Drug Deliv Rev. 2021;177:113847. doi: 10.1016/j.addr.2021.113847. PubMed PMID: 34182018.
- Tian H, Zhang T, Qin S, Huang Z, Zhou L, Shi J, et al. Enhancing the therapeutic efficacy of nanoparticles for cancer treatment using versatile targeted strategies. J Hematol Oncol. 2022;15(1):132. doi: 10.1186/s13045-022-01320-5. PubMed PMID: 36096856. PubMed PMCID: PMC9469622.
- Zhu Q, Liu C, Liu L, Li Y. Effect of pulse parameters on ablation efficiency in dual-frequency HIFU therapy. 2023;134:107064. doi: 10.1016/j.ultras.2023.107064. PubMed PMID: 37331052.
- Duclos S, Golin A, Fox A, Chaudhary N, Camelo-Piragua S, Pandey A, Xu Z. Transcranial histotripsy parameter study in primary and metastatic murine brain tumor models. Int J Hyperthermia. 2023;40(1):2237218. doi: 10.1080/02656736.2023.2237218. PubMed PMID: 37495214. PubMed PMCID: PMC10410615.
- Quadri SA, Waqas M, Khan I, Khan MA, Suriya SS, Farooqui M, Fiani B. High-intensity focused ultrasound: past, present, and future in neurosurgery. Neurosurg Focus. 2018;44(2):E16. doi: 10.3171/2017.11.FOCUS17610. PubMed PMID: 29385923.
- Bouakaz A, Bouhmila F, Georgiev SG, Kheloufi A, Khoufache S. Existence of classical solutions for a class of the Khokhlov–Zabolotskaya–Kuznetsov type equations. Vladikavkaz Math J. 2023;25(3):36-50. doi: 10.46698/n8469-5074-4131-b.
- Kagami S, Kanagawa T. Weakly nonlinear propagation of focused ultrasound in bubbly liquids with a thermal effect: Derivation of two cases of Khokolov-Zabolotskaya-Kuznetsoz equations. Ultrason Sonochem. 2022;88:105911. doi: 10.1016/j.ultsonch.2022.105911. PubMed PMID: 35810619. PubMed PMCID: PMC9696949.
- Guo GP, Li XF, Chen ZH, Meng TH, Li YZ, Ma QY. Nonlinear fields of focused acoustic-vortex beams. Applied Acoustics. 2024;221:110022. doi: 10.1016/j.apacoust.2024.110022.
- Hasani MH, Gharibzadeh S, Farjami Y, Tavakkoli J. Unmitigated numerical solution to the diffraction term in the parabolic nonlinear ultrasound wave equation. J Acoust Soc Am. 2013;134(3):1775-90. doi: 10.1121/1.4774278. PubMed PMID: 23967912.
- Yang X, Cleveland RO. Time domain simulation of nonlinear acoustic beams generated by rectangular pistons with application to harmonic imaging. J Acoust Soc Am. 2005;117(1):113-23. doi: 10.1121/1.1828671. PubMed PMID: 15704404.
- Sheng R, Zhang J. Ultrasonic nonlinear fields generated from transmitters with varied aperture angles. Applied Acoustics. 2022;195:108867. doi: 10.1016/j.apacoust.2022.108867.
- Zhou H, Huang SH, Li W. Parametric Acoustic Array and Its Application in Underwater Acoustic Engineering. Sensors (Basel). 2020;20(7):2148. doi: 10.3390/s20072148. PubMed PMID: 32290194. PubMed PMCID: PMC7180615.
- Haddadi S, Ahmadian MT. Numerical and Experimental Evaluation of High-Intensity Focused Ultrasound-Induced Lesions in Liver Tissue Ex Vivo. J Ultrasound Med. 2018;37(6):1481-91. doi: 10.1002/jum.14491. PubMed PMID: 29193279.
- Hajihasani M, Farjami Y, Gharibzadeh S, Tavakkoli J. A novel numerical solution to the diffraction term in the KZK nonlinear wave equation. In 38th Annual Symposium of the Ultrasonic Industry Association (UIA); IEEE; 2009. p. 1-9.
- Davis TA, Rajamanickam S, Sid-Lakhdar WM. A survey of direct methods for sparse linear systems. Acta Numerica. 2016;25:383-566. doi: 10.1017/S0962492916000076.
- Yuldashev PV, Karzova MM, Kreider W, Rosnitskiy PB, Sapozhnikov OA, Khokhlova VA. “HIFU Beam:” a simulator for predicting axially symmetric nonlinear acoustic fields generated by focused transducers in a layered medium. IEEE Trans Ultrason Ferroelectr Freq Control. 2021;68(9):2837-52. doi: 10.1109/ TUFFC.2021.3074611.
- Irfan M, Shah FA, Nisar KS. Fibonacci wavelet method for solving Pennes bioheat transfer equation. International Journal of Wavelets, Multiresolution and Information Processing. 2021;19(06):2150023. doi: 10.1142/S0219691321500235.
- El-Sapa S, El-Bary AA, Albalawi W, Atef HM. Modelling Pennes’, bioheat transfer equation in thermoelasticity with one relaxation time. Journal of Electromagnetic Waves and Applications. 2024;38(1):105-21. doi: 10.1080/09205071.2023.2272612.
- Dehbani M, Rahimi M, Rahimi Z. A review on convective heat transfer enhancement using ultrasound. Applied Thermal Engineering. 2022;208:118273. doi: 10.1016/j.applthermaleng.2022.118273.
- Dong H, Liu G, Tong X. Influence of temperature-dependent acoustic and thermal parameters and nonlinear harmonics on the prediction of thermal lesion under HIFU ablation. Math Biosci Eng. 2021;18(2):1340-51. doi: 10.3934/mbe.2021070. PubMed PMID: 33757188.
- Zou X, Qian S, Tan Q, Dong H. Formation of thermal lesions in tissue and its optimal control during HIFU scanning therapy. Symmetry. 2020;12(9):1386. doi: 10.3390/sym12091386.
- Gupta P, Srivastava A. Numerical analysis of thermal response of tissues subjected to high intensity focused ultrasound. Int J Hyperthermia. 2018;35(1):419-34. doi: 10.1080/02656736.2018.1506166. PubMed PMID: 30307345.
- Hallaj IM, Cleveland RO, Hynynen K. Simulations of the thermo-acoustic lens effect during focused ultrasound surgery. J Acoust Soc Am. 2001;109(5 Pt 1):2245-53. doi: 10.1121/1.1360239. PubMed PMID: 11386575.
- Heikkilä J, Curiel L, Hynynen K. Local harmonic motion monitoring of focused ultrasound surgery--a simulation model. IEEE Trans Biomed Eng. 2010;57(1):185-93. doi: 10.1109/TBME.2009.2033465. PubMed PMID: 19822463.
- Almekkaway MK, Shehata IA, Ebbini ES. Anatomical-based model for simulation of HIFU-induced lesions in atherosclerotic plaques. Int J Hyperthermia. 2015;31(4):433-42. doi: 10.3109/02656736.2015.1018966. PubMed PMID: 25875223.
- Kyriakou Z, Corral-Baques MI, Amat A, Coussios CC. HIFU-induced cavitation and heating in ex vivo porcine subcutaneous fat. Ultrasound Med Biol. 2011;37(4):568-79. doi: 10.1016/j.ultrasmedbio.2011.01.001. PubMed PMID: 21371810.
- Ginter S. Numerical simulation of ultrasound-thermotherapy combining nonlinear wave propagation with broadband soft-tissue absorption. 2000;37(10):693-6. doi: 10.1016/s0041-624x(00)00012-3. PubMed PMID: 10950353.
- Suomi V, Treeby B, Jaros J, Makela P, Anttinen M, Saunavaara J, et al. Transurethral ultrasound therapy of the prostate in the presence of calcifications: A simulation study. Med Phys. 2018;45(11):4793-805. doi: 10.1002/mp.13183. PubMed PMID: 30216469.
- Dong H, Liu G, Ma Zh, Peng G, Pan P. Simulation Study on the Effect of High-Intensity Focused Ultrasound on Thermal Lesion of Biological Tissue under Different Treatment Modes. Iran J Med Phys 2022;19:199-206. 10.22038/IJMP.2022.59497.1999.
- Sharma U, Chang EW, Yun SH. Long-wavelength optical coherence tomography at 1.7 microm for enhanced imaging depth. Opt Express. 2008;16(24):19712-23. doi: 10.1364/oe.16.019712. PubMed PMID: 19030057. PubMed PMCID: PMC2773451.
- Chen C, Sun A, Ju BF, Wang C. Width and depth gauging of rectangular subsurface defects based on all-optical laser-ultrasonic technology. Applied Acoustics. 2022;191:108684. doi: 10.1016/j.apacoust.2022.108684.
- Mei L, Zhang Z. Advances in Biological Application of and Research on Low-Frequency Ultrasound. Ultrasound Med Biol. 2021;47(10):2839-52. doi: 10.1016/j.ultrasmedbio.2021.06.005. PubMed PMID: 34304908.
- Jiang L, Lu G, Yang Y, Xu Y, Qi F, Li J, et al. Multichannel Piezo-Ultrasound Implant with Hybrid Waterborne Acoustic Metastructure for Selective Wireless Energy Transfer at Megahertz Frequencies. Adv Mater. 2021;33(44):e2104251. doi: 10.1002/adma.202104251. PubMed PMID: 34480501.
- Juang EK, De Koninck LH, Vuong KS, Gnanaskandan A, Hsiao CT, Averkiou MA. Controlled Hyperthermia With High-Intensity Focused Ultrasound and Ultrasound Contrast Agent Microbubbles in Porcine Liver. Ultrasound Med Biol. 2023;49(8):1852-60. doi: 10.1016/j.ultrasmedbio.2023.04.015. PubMed PMID: 37246049. PubMed PMCID: PMC10330369.
- Quarato CMI, Lacedonia D, Salvemini M, Tuccari G, Mastrodonato G, Villani R, et al. A Review on Biological Effects of Ultrasounds: Key Messages for Clinicians. Diagnostics (Basel). 2023;13(5):855. doi: 10.3390/diagnostics13050855. PubMed PMID: 36899998. PubMed PMCID: PMC10001275.
- Xu Z, Hall TL, Vlaisavljevich E, Lee FT Jr. Histotripsy: the first noninvasive, non-ionizing, non-thermal ablation technique based on ultrasound. Int J Hyperthermia. 2021;38(1):561-75. doi: 10.1080/02656736.2021.1905189. PubMed PMID: 33827375. PubMed PMCID: PMC9404673.
- Babenko VA, Sychev AA, Bunkin NF. Optical Breakdown on Clusters of Gas Nanobubbles in Water; Possible Applications in Laser Ophthalmology. Appl Sci. 2023;13(4):2183. doi: 10.3390/app13042183.
|