- Ward EM, Sherman RL, Henley SJ, Jemal A, Siegel DA, Feuer EJ, et al. Annual Report to the Nation on the Status of Cancer, Featuring Cancer in Men and Women Age 20-49 Years. J Natl Cancer Inst. 2019;111(12):1279-97. doi: 10.1093/jnci/djz106. PubMed PMID: 31145458. PubMed PMCID: PMC6910179.
- Iddan G, Meron G, Glukhovsky A, Swain P. Wireless capsule endoscopy. 2000;405(6785):417. doi: 10.1038/35013140. PubMed PMID: 10839527.
- Houdeville C, Souchaud M, Leenhardt R, Beaumont H, Benamouzig R, McAlindon M, et al. A multisystem-compatible deep learning-based algorithm for detection and characterization of angiectasias in small-bowel capsule endoscopy. A proof-of-concept study. Dig Liver Dis. 2021;53(12):1627-31. doi: 10.1016/j.dld.2021.08.026. PubMed PMID: 34563469.
- Nam JH, Hwang Y, Oh DJ, Park J, Kim KB, Jung MK, Lim YJ. Development of a deep learning-based software for calculating cleansing score in small bowel capsule endoscopy. Sci Rep. 2021;11(1):4417. doi: 10.1038/s41598-021-81686-7. PubMed PMID: 33627678. PubMed PMCID: PMC7904767.
- Spada C, McNamara D, Despott EJ, Adler S, Cash BD, Fernández-Urién I, et al. Performance measures for small-bowel endoscopy: a European Society of Gastrointestinal Endoscopy (ESGE) Quality Improvement Initiative. Endoscopy. 2019;51(6):574-98. doi: 10.1055/a-0889-9586. PubMed PMID: 31075800.
- Guo X, Yuan Y. Semi-supervised WCE image classification with adaptive aggregated attention. Med Image Anal. 2020;64:101733. doi: 10.1016/j.media.2020.101733. PubMed PMID: 32574987.
- Xiao Z, Feng LN. A study on wireless capsule endoscopy for small intestinal lesions detection based on deep learning target detection. IEEE Access. 2020;8:159017-26. doi: 10.1109/ACCESS.2020.3019888.
- Karargyris A, Bourbakis N. Detection of small bowel polyps and ulcers in wireless capsule endoscopy videos. IEEE Trans Biomed Eng. 2011;58(10):2777-86. doi: 10.1109/TBME.2011.2155064. PubMed PMID: 21592915.
- Lee YG, Yoon G. Real-time image analysis of capsule endoscopy for bleeding discrimination in embedded system platform. World Acad Sci Eng Technol. 2011;59:2526-30.
- Ghosh T, Fattah SA, Wahid KA, Zhu WP, Ahmad MO. Cluster based statistical feature extraction method for automatic bleeding detection in wireless capsule endoscopy video. Comput Biol Med. 2018;94:41-54. doi: 10.1016/j.compbiomed.2017.12.014. PubMed PMID: 29407997.
- Liaqat A, Khan MA, Shah JH, Sharif M, Yasmin M, Fernandes SL. Automated ulcer and bleeding classification from WCE images using multiple features fusion and selection. Journal of Mechanics in Medicine and Biology. 2018;18(04):1850038. doi: 10.1142/S0219519418500380.
- Valério MT, Gomes S, Salgado M, Oliveira HP, Cunha A. Lesions multiclass classification in endoscopic capsule frames. Procedia Computer Science. 2019;164:637-45. doi: 10.1016/j.procs.2019.12.230.
- Park SC, Chun HJ, Kim ES, Keum B, Seo YS, Kim YS, et al. Sensitivity of the suspected blood indicator: an experimental study. World J Gastroenterol. 2012;18(31):4169-74. doi: 10.3748/wjg.v18.i31.4169. PubMed PMID: 22919250. PubMed PMCID: PMC3422798.
- Buscaglia JM, Giday SA, Kantsevoy SV, Clarke JO, Magno P, Yong E, Mullin GE. Performance characteristics of the suspected blood indicator feature in capsule endoscopy according to indication for study. Clin Gastroenterol Hepatol. 2008;6(3):298-301. doi: 10.1016/j.cgh.2007.12.029. PubMed PMID: 18255353.
- Ghosh T, Chakareski J. Deep Transfer Learning for Automated Intestinal Bleeding Detection in Capsule Endoscopy Imaging. J Digit Imaging. 2021;34(2):404-17. doi: 10.1007/s10278-021-00428-3. PubMed PMID: 33728563. PubMed PMCID: PMC8290011.
- Al Mamun A, Em PP, Ghosh T, Hossain MM, Hasan MG, Sadeque MG. Bleeding recognition technique in wireless capsule endoscopy images using fuzzy logic and principal component analysis. International Journal of Electrical and Computer Engineering (IJECE). 2021;11(3):2688-95. doi: 10.11591/ijece.v11i3.pp2688-2695.
- Yuan Y, Meng MQ. Deep learning for polyp recognition in wireless capsule endoscopy images. Med Phys. 2017;44(4):1379-89. doi: 10.1002/mp.12147. PubMed PMID: 28160514.
- Jia X, Xing X, Yuan Y, Xing L, Meng MQ. Wireless capsule endoscopy: A new tool for cancer screening in the colon with deep-learning-based polyp recognition. Proceedings of the IEEE. 2019;108(1):178-97. doi: 10.1109/JPROC.2019.2950506.
- Rustam F, Siddique MA, Siddiqui HU, Ullah S, Mehmood A, Ashraf I, Choi GS. Wireless capsule endoscopy bleeding images classification using CNN based model. IEEE Access. 2021;9:33675-88. doi: 10.1109/ACCESS.2021.3061592.
- Vallée R, De Maissin A, Coutrot A, Normand N, Bourreille A, Mouchère H. Accurate small bowel lesions detection in wireless capsule endoscopy images using deep recurrent attention neural network. 21st International Workshop on Multimedia Signal Processing (MMSP); Kuala Lumpur, Malaysia: IEEE; 2019. p. 1-5.
- Tsuboi A, Oka S, Aoyama K, Saito H, Aoki T, Yamada A, et al. Artificial intelligence using a convolutional neural network for automatic detection of small-bowel angioectasia in capsule endoscopy images. Dig Endosc. 2020;32(3):382-90. doi: 10.1111/den.13507. PubMed PMID: 31392767.
- Hajabdollahi M, Esfandiarpoor R, Sabeti E, Karimi N, Soroushmehr SR, Samavi S. Multiple abnormality detection for automatic medical image diagnosis using bifurcated convolutional neural network. Biomedical Signal Processing and Control. 2020;57:101792. doi: 10.1016/j.bspc.2019.101792.
- Leenhardt R, Vasseur P, Li C, Saurin JC, Rahmi G, Cholet F, et al. A neural network algorithm for detection of GI angiectasia during small-bowel capsule endoscopy. Gastrointest Endosc. 2019;89(1):189-94. doi: 10.1016/j.gie.2018.06.036. PubMed PMID: 30017868.
- Aoki T, Yamada A, Aoyama K, Saito H, Tsuboi A, Nakada A, et al. Automatic detection of erosions and ulcerations in wireless capsule endoscopy images based on a deep convolutional neural network. Gastrointest Endosc. 2019;89(2):357-63.e2. doi: 10.1016/j.gie.2018.10.027. PubMed MID: 30670179.
- Xiao Jia, Meng MQ. A deep convolutional neural network for bleeding detection in Wireless Capsule Endoscopy images. Annu Int Conf IEEE Eng Med Biol Soc. 2016;2016:639-42. doi: 10.1109/EMBC.2016.7590783. PubMed PMID: 28268409.
- Fonseca F, Nunes B, Salgado M, Cunha A. Abnormality classification in small datasets of capsule endoscopy images. Procedia Computer Science. 2022;196:469-76. doi: 10.1016/j.procs.2021.12.038.
- Smedsrud PH, Thambawita V, Hicks SA, Gjestang H, Nedrejord OO, Næss E, et al. Kvasir-Capsule, a video capsule endoscopy dataset. Sci Data. 2021;8(1):142. doi: 10.1038/s41597-021-00920-z. PubMed PMID: 34045470. PubMed PMCID: PMC8160146.
- Afonso J, Mascarenhas M, Ribeiro T, Cardoso H, Andrade P, Ferreira JP, Saraiva MM, Macedo G. Deep Learning for Automatic Identification and Characterization of the Bleeding Potential of Enteric Protruding Lesions in Capsule Endoscopy. Gastro Hep Advances. 2022;1(5):835-43. doi: 10.1016/j.gastha.2022.04.008.
- Saurin JC, Delvaux M, Gaudin JL, Fassler I, Villarejo J, Vahedi K, et al. Diagnostic value of endoscopic capsule in patients with obscure digestive bleeding: blinded comparison with video push-enteroscopy. Endoscopy. 2003;35(7):576-84. doi: 10.1055/s-2003-40244. PubMed PMID: 12822092.
- Mascarenhas Saraiva MJ, Afonso J, Ribeiro T, Ferreira J, Cardoso H, Andrade AP, et al. Deep learning and capsule endoscopy: automatic identification and differentiation of small bowel lesions with distinct haemorrhagic potential using a convolutional neural network. BMJ Open Gastroenterol. 2021;8(1):e000753. doi: 10.1136/bmjgast-2021-000753. PubMed PMID: 34580155. PubMed PMCID: PMC8477239.
- Gueye L, Yildirim-Yayilgan S, Cheikh FA, Balasingham I. Automatic detection of colonoscopic anomalies using capsule endoscopy. IEEE international conference on image processing (ICIP); Canada: IEEE; 2015. p. 1061-4.
- Bernal J, Aymeric H. Gastrointestinal image analysis (giana) angiodysplasia d&l challenge. Available from: https://endovissub2017-giana.grand-challenge.org/home/. 2017
- Koulaouzidis A, Iakovidis DK, Yung DE, Rondonotti E, Kopylov U, Plevris JN, et al. KID Project: an internet-based digital video atlas of capsule endoscopy for research purposes. Endosc Int Open. 2017;5(6):E477-83. doi: 10.1055/s-0043-105488. PubMed PMID: 28580415. PubMed PMCID: PMC5452962.
- Perez L, Wang J. The effectiveness of data augmentation in image classification using deep learning [Internet]. arXiv [Preprint]. 2017 [cited 2017 Dec 13]. Available from: https://arxiv.org/abs/1712.04621.
- Salamon J, Bello JP. Deep convolutional neural networks and data augmentation for environmental sound classification. IEEE Signal processing letters. 2017;24(3):279-83. doi: 10.1109/LSP.2017.2657381.
- Pritt M, Chern G. Satellite image classification with deep learning. Applied imagery pattern recognition workshop (AIPR); Washington, DC, USA: IEEE; 2017. p. 1-7.
- He K, Zhang X, Ren S, Sun J. Delving deep into rectifiers: Surpassing human-level performance on imagenet classification. Proceedings of the IEEE international conference on computer vision; ICCV; 2015. p. 1026-34.
- Zhang L, Wang S, Liu B. Deep learning for sentiment analysis: A survey. WIRs: Data Mining and Knowledge Discovery. 2018;8(4):e1253. doi: 10.1002/widm.1253.
- Redmon J, Divvala S, Girshick R, Farhadi A. You only look once: Unified, real-time object detection. Proceedings of the IEEE conference on computer vision and pattern recognition; CVPR; 2016. p. 779-88.
- Girshick R. Fast r-cnn. Proceedings of the IEEE international conference on computer vision; CVPR; 2015. p. 1440-8.
- Chen J, Li K, Deng Q, Li K, Philip SY. Distributed deep learning model for intelligent video surveillance systems with edge computing. IEEE Transactions on Industrial Informatics. 2019. doi: 10.1109/TII.2019.2909473.
- Wang P, Xiao X, Glissen Brown JR, Berzin TM, Tu M, Xiong F, et al. Development and validation of a deep-learning algorithm for the detection of polyps during colonoscopy. Nat Biomed Eng. 2018;2(10):741-8. doi: 10.1038/s41551-018-0301-3. PubMed PMID: 31015647.
- Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition [Internet]. arXiv [Preprint]. 2014 [cited 20214 Sep 4]. Available from: https://arxiv.org/abs/1409.1556.
- Huang G, Liu Z, Van Der Maaten L, Weinberger KQ. Densely connected convolutional networks. Proceedings of the IEEE conference on computer vision and pattern recognition; CVPR; 2017. p. 4700-8.
- Szegedy C, Ioffe S, Vanhoucke V, Alemi A. Inception-v4, inception-resnet and the impact of residual connections on learning. Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence (AAAI-17); AAAI; 2017. p. 4278-84.
- Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. Mobilenetv2: Inverted residuals and linear bottlenecks. Proceedings of the IEEE conference on computer vision and pattern recognition; CVPR; 2018. p. 4510-20.
- He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition; CVPR; 2016. p. 770-8.
- He K, Zhang X, Ren S, Sun J. Identity mappings in deep residual networks. In: Computer Vision–ECCV 2016: 14th European Conference; Amsterdam, Netherlands: Springer; 2016. p. 630-45.
- Chollet F. Xception: Deep learning with depthwise separable convolutions. Proceedings of the IEEE conference on computer vision and pattern recognition; CVPR; 2017. p. 1251-8.
- Clevert DA, Unterthiner T, Hochreiter S. Fast and accurate deep network learning by exponential linear units (elus) [Internet]. arXiv [Preprint]. 2015 [cited 2015 Nov 23]. Available from: https://arxiv.org/abs/1511.07289.
- Zeiler MD. Adadelta: an adaptive learning rate method [Internet]. arXiv [Preprint]. 2012 [cited 2012 Dec 22]. Available from: https://arxiv.org/abs/1212.5701.
- Selvaraju RR, Cogswell M, Das A, Vedantam R, Parikh D, Batra D. Grad-cam: Visual explanations from deep networks via gradient-based localization. Proceedings of the IEEE international conference on computer vision; CVPR; 2017. p. 618-26.
- Caroppo A, Leone A, Siciliano P. Deep transfer learning approaches for bleeding detection in endoscopy images. Comput Med Imaging Graph. 2021;88:101852. doi: 10.1016/j.compmedimag.2020.101852. PubMed PMID: 33493998.
- Alam MJ, Rashid RB, Fattah SA, Saquib M. RAt-CapsNet: A Deep Learning Network Utilizing Attention and Regional Information for Abnormality Detection in Wireless Capsule Endoscopy. IEEE J Transl Eng Health Med. 2022;10:3300108. doi: 10.1109/JTEHM.2022.3198819. PubMed PMID: 36032311. PubMed PMCID: PMC9401095.
- Vani V, Prashanth KM. Ulcer detection in Wireless Capsule Endoscopy images using deep CNN. Journal of King Saud University-Computer and Information Sciences. 2022;34(6):3319-31. doi: 10.1016/j.jksuci.2020.09.008.
- Vats A, Raja K, Pedersen M, Mohammed A. Multichannel residual cues for fine-grained classification in wireless capsule endoscopy. IEEE Access. 2022;10:91414-23. doi: 10.1109/ACCESS.2022.3201515.
|