Arjmand, Mojtaba, Ghassemi, Fariba, Rafiepour, Payman, Zeinali, Reyhaneh, Riazi-Esfahani, Hamid, Beiki-Ardakani, Akbar. (1402). Dosimetric Investigation of Six Ru-106 Eye Plaques by EBT3 Radiochromic Films and Monte Carlo Simulation. سامانه مدیریت نشریات علمی, 13(4), 309-316. doi: 10.31661/jbpe.v0i0.2010-1206
Mojtaba Arjmand; Fariba Ghassemi; Payman Rafiepour; Reyhaneh Zeinali; Hamid Riazi-Esfahani; Akbar Beiki-Ardakani. "Dosimetric Investigation of Six Ru-106 Eye Plaques by EBT3 Radiochromic Films and Monte Carlo Simulation". سامانه مدیریت نشریات علمی, 13, 4, 1402, 309-316. doi: 10.31661/jbpe.v0i0.2010-1206
Arjmand, Mojtaba, Ghassemi, Fariba, Rafiepour, Payman, Zeinali, Reyhaneh, Riazi-Esfahani, Hamid, Beiki-Ardakani, Akbar. (1402). 'Dosimetric Investigation of Six Ru-106 Eye Plaques by EBT3 Radiochromic Films and Monte Carlo Simulation', سامانه مدیریت نشریات علمی, 13(4), pp. 309-316. doi: 10.31661/jbpe.v0i0.2010-1206
Arjmand, Mojtaba, Ghassemi, Fariba, Rafiepour, Payman, Zeinali, Reyhaneh, Riazi-Esfahani, Hamid, Beiki-Ardakani, Akbar. Dosimetric Investigation of Six Ru-106 Eye Plaques by EBT3 Radiochromic Films and Monte Carlo Simulation. سامانه مدیریت نشریات علمی, 1402; 13(4): 309-316. doi: 10.31661/jbpe.v0i0.2010-1206
Dosimetric Investigation of Six Ru-106 Eye Plaques by EBT3 Radiochromic Films and Monte Carlo Simulation
1Ocular Oncology service, Farabi Eye Hospital, Tehran University of Medical Sciences, Tehran, Iran
2Retina & Vitreous Service- Ocular Oncology Service, Farabi Eye Hospital, Tehran University of Medical Sciences, Tehran, Iran
3Department of Nuclear Engineering, Shiraz University of Medical Sciences, Shiraz, Iran
4Department of Medical Physics, Tabriz University of Medical Science, Tabriz, Iran
5Retina service, Farabi Eye Hospital, Tehran University of Medical Sciences, Tehran, Iran
6Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
چکیده
Background: Ophthalmic brachytherapy using radioactive plaques is an effective technique for the treatment of uveal melanoma. Ru-106 eye plaques are considered as interesting issue due to their steep gradient dose. The pre-planning evaluation of dosimetric parameters is essential for the treatment planning system. Objective: The current study aims at providing dose distributions of six Ru-106 eye plaques (CCA, CCB, CGD, CIB, COB and COD) using radiochromic EBT3 film, Geant4 Monte Carlo toolkit and the treatment planning software (Plaque Simulator). Material and Methods: In this experimental study, an in-house phantom was employed for depth dose measurements with EBT3 films. Also, Geant4.10.5 scoring mesh was implemented to obtain the 2D dose distribution of the plaques. The results were compared with Plaque Simulator software and the manufacturer’s (BEBIG) data. The gamma index criterion (3%/3 mm) was used to evaluate dose distributions obtained by the film measurements and Geant4 simulation. Results: A good agreement was achieved between simulation and experimental results. Gamma index passing rate was 94.2%, 89.3%, 88.2%, 82.2%, 92.2% and 90.1% for CCA, CCB, CGD, CIB, COB and COD plaques, respectively. Absolute dose rate (mGy/min) obtained by EBT3 film at the depth of 2 mm was 79.4 mGy/min, 81.0 mGy/min, 78.6 mGy/min, 62.2 mGy/min, 75.2 mGy/min and 81.2 mGy/min for CCA, CCB, CGD, CIB, COB and COD plaques, respectively. Conclusion: The measured dose distributions and lateral dose profiles may be utilized in the treatment planning system to cover clinical volumes such as the clinical target volume and the gross tumor volume.
Singh AD, Turell ME, Topham AK. Uveal melanoma: trends in incidence, treatment, and survival. 2011;118(9):1881-5. doi: 10.1016/j.ophtha.2011.01.040. PubMed PMID: 21704381.
Virgili G, Gatta G, Ciccolallo L, Capocaccia R, Biggeri A, et al. Incidence of uveal melanoma in Europe. 2007;114(12):2309-15. doi: 10.1016/j.ophtha.2007.01.032. PubMed PMID: 17498805.
Kivelä T. The epidemiological challenge of the most frequent eye cancer: retinoblastoma, an issue of birth and death. Br J Ophthalmol. 2009;93(9):1129-31. doi: 10.1136/bjo.2008.150292. PubMed PMID: 19704035.
American Brachytherapy Society - Ophthalmic Oncology Task Force. The American Brachytherapy Society consensus guidelines for plaque brachytherapy of uveal melanoma and retinoblastoma. Brachytherapy. 2014;13(1):1-14. doi: 10.1016/j.brachy.2013.11.008. PubMed PMID: 24373763.
Zehetmayer M, Menapace R, Kulnig W. Combined local excision and brachytherapy with ruthenium-106 in the treatment of epibulbar malignancies. 1993;207(3):133-9. doi: 10.1159/000310419. PubMed PMID: 8278179.
Cohen VM, Papastefanou VP, Liu S, Stoker I, Hungerford JL. The use of strontium-90 Beta radiotherapy as adjuvant treatment for conjunctival melanoma. J Oncol. 2013;2013:349162. doi: 10.1155/2013/34916. PubMed PMID: 23431299. PubMed PMCID: PMC3572694.
Brewington BY, Shao YF, Davidorf FH, Cebulla CM. Brachytherapy for patients with uveal melanoma: historical perspectives and future treatment directions. Clin Ophthalmol. 2018;12:925-34. doi: 10.2147/OPTH.S129645. PubMed PMID: 29844657. PubMed PMCID: PMC5963830.
Echegaray JJ, Bechrakis NE, Singh N, Bellerive C, Singh AD. Iodine-125 brachytherapy for uveal melanoma: a systematic review of radiation dose. Ocul Oncol Pathol. 2017;3(3):193-198. doi: 10.1159/000455872. PubMed PMID: 29071269. PubMed PMCID: PMC5649338.
Wilkinson DA, Kolar M, Fleming PA, Singh AD. Dosimetric comparison of 106Ru and 125I plaques for treatment of shallow (≤ 5 mm) choroidal melanoma lesions. Br J Radiol. 2008;81(970):784-9. doi: 10.1259/bjr/76813976. PubMed PMID: 18628320.
Taccini G, Cavagnetto F, Coscia G, Garelli S, Pilot A. The determination of dose characteristics of ruthenium ophthalmic applicators using radiochromic film. Med Phys. 1997;24(12):2034-7. doi: 10.1118/1.598117. PubMed PMID: 9434987.
Gueli AM, Mannino G, Troja SO, Asero G, Burrafato G, De Vincolis R, et al. 3D dosimetry on Ru-106 plaque for ocular melanoma treatments. Radiat Meas. 2011;46(12):2014-9. doi: 10.1016/j.radmeas.2011.07.032.
Heilemann G, Nesvacil N, Blaickner M, Kostiukhina N, Georg D. Multidimensional dosimetry of 106Ru eye plaques using EBT3 films and its impact on treatment planning. Med Phys. 2015;42(10):5798-808. doi: 10.1118/1.4929564. PubMed PMID: 26429254.
Soares CG, Vynckier S, Järvinen H, Cross WG, Sipilä P, Flühs D, Schaeken B, Mourtada FA, Bass GA, Williams TT. Dosimetry of beta-ray ophthalmic applicators: Comparison of different measurement methods. Med Phys. 2001;28(7):1373-84. doi: 10.1118/1.1376441. PubMed PMID: 11488568.
Binder W, Chiari A, Aiginger H. Determination of the dose distribution of an ophthalmic 106Ru irradiator with TLDs and an eye phantom. Radiation Protection Dosimetry. 1990;34(1-4):275-8. doi: 10.1093/oxfordjournals.rpd.a080901.
Lax I. Dosimetry of 106Ru eye applicators with a p-type silicon detector. Phys Med Biol. 1991;36(7):963-72. doi: 10.1088/0031-9155/36/7/005. PubMed PMID: 1886930.
Brualla L, Zaragoza FJ, Sauerwein W. Monte Carlo simulation of the treatment of eye tumors with 106Ru plaques: a study on maximum tumor height and eccentric placement. Ocul Oncol Pathol. 2014;1(1):2-12. doi: 10.1159/000362560. PubMed PMID: 27175356. PubMed PMCID: PMC4864522.
Hermida-López M. Calculation of dose distributions for 12 106Ru/106Rh ophthalmic applicator models with the PENELOPE Monte Carlo code. Med Phys. 2013;40(10):101705. doi: 10.1118/1.4820368.
Low DA, Harms WB, Mutic S, Purdy JA. A technique for the quantitative evaluation of dose distributions. Med Phys. 1998;25(5):656-61. doi: 10.1118/1.598248. PubMed PMID: 9608475.
L’Annunziata MF. Handbook of radioactivity analysis. Academic Press; 2012. p. 1305-60.
Kok E, Geelen BP. IMRT pre-treatment verification using EBT3 film and FilmQA Pro software. Barcelona; 2012. Available from: http://www.gafchromic.com/documents/Kok_Poster_IMRT_EBT3_film_ESTRO_20120507.pdf.
Devic S, Tomic N, Lewis D. Reference radiochromic film dosimetry: review of technical aspects. Phys Med. 2016;32(4):541-56. doi: 10.1016/j.ejmp.2016.02.008. PubMed PMID: 27020097.
Schoenfeld AA, Poppinga D, Harder D, Doerner KJ, Poppe B. The artefacts of radiochromic film dosimetry with flatbed scanners and their causation by light scattering from radiation-induced polymers. Phys Med Biol. 2014;59(13):3575-97. doi: 10.1088/0031-9155/59/13/3575. PubMed PMID: 24909235.
Chavel P, Lowenthal S. Noise and coherence in optical image processing. I. The Callier effect and its influence on image contrast. 1978;68(5):559-68. doi: 10.1364/JOSA.68.000559.
Sommer H, Ebenau M, Spaan B, Eichmann M. Monte Carlo simulation of ruthenium eye plaques with GEANT4: influence of multiple scattering algorithms, the spectrum and the geometry on depth dose profiles. Phys Med Biol. 2017;62(5):1848-64. doi: 10.1088/1361-6560/aa5696. PubMed PMID: 28050967.
Cember H, Johnson TE. Introduction to Health Physics: 4th ed. McGraw-Hill Companies; 2009.
Depuydt T, Van Esch A, Huyskens DP. A quantitative evaluation of IMRT dose distributions: refinement and clinical assessment of the gamma evaluation. Radiother Oncol. 2002;62(3):309-19. doi: 10.1016/s0167-8140(01)00497-2. PubMed PMID: 12175562.