
تعداد نشریات | 20 |
تعداد شمارهها | 1,226 |
تعداد مقالات | 11,165 |
تعداد مشاهده مقاله | 77,036,645 |
تعداد دریافت فایل اصل مقاله | 101,220,622 |
Comparison of the effects of pneumatic ankle-foot orthosis and posterior leaf spring ankle-foot orthosis on spatiotemporal parameters of gait and ankle range of motion in patients with stroke: a preliminary study | ||
Journal of Rehabilitation Sciences & Research | ||
مقاله 6، دوره 7، شماره 3، آذر 2020، صفحه 130-133 اصل مقاله (784.68 K) | ||
نوع مقاله: Original Articles | ||
شناسه دیجیتال (DOI): 10.30476/jrsr.2020.85647.1080 | ||
نویسندگان | ||
Hasti Mohri1؛ Ali Poorghasem1؛ Atefe Rahimi2؛ Mohammad Hadadi* 3، 4 | ||
1Department of Orthotics and Prosthetics, School of Rehabilitation Sciences, Isfahan University of Medical Sciences, Isfahan, Iran. | ||
2Department of Physical Therapy, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran. | ||
3Department of Orthotics and Prosthetics, School of Rehabilitation Sciences, Shiraz University of Medical Sciences, Shiraz, Iran. | ||
4Rehabilitation Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran. | ||
چکیده | ||
Background: Chronic stroke patients face impairment due to ankle dorsiflexor weakness that can influence their ankle kinematics and gait. The objective of this study was to compare the effects of a pneumonic ankle-foot orthosis (AFO) with those of a posterior leaf spring (PLS) AFO on the spatiotemporal parameters of gait and ankle range of motion in hemiplegic stroke patients. Methods: In this cross-sectional study, 5 participants with chronic stroke were tested during one session under three conditions: without orthosis, with pneumatic AFO, and with PLS-AFO. Spatiotemporal gait parameters and ankle joint range of motion were measured with a motion analysis system. Results: The results indicated that the pneumatic orthosis can improve gait speed in comparison with no orthotics (p = 0.04). No significant difference was seen regarding other evaluated spatiotemporal parameters and ankle range of motion under different orthotic conditions. Conclusion: The comparison of the immediate effects of the pneumatic ankle-foot orthosis and those of the posterior leaf spring ankle-foot orthosis showed that in comparison with no orthosis or with PLS-AFO, the pneumatic orthosis could improve gait speed, but had no effect on cadence, step length, or ankle range of motion in chronic stroke patients. | ||
کلیدواژهها | ||
Pneumatic؛ Ankle-foot orthosis؛ Spatiotemporal؛ Kinematics؛ Stroke | ||
مراجع | ||
1. Ma C. Intervention for foot drop in a patient with subacute stroke: A case report: Florida Gulf Coast University; 2015;2(10):1012-10 2. Pourghasem A, Takamjani IE, Karimi MT, Kamali M, Jannesari M, Salafian I. The effect of a powered ankle foot orthosis on walking in a stroke subject: a case study. J Phys Ther Sci. 2016;28(11):3236-40. 3. Bouchalová V, Houben E, Tancsik D, Schaekers L, Meuws L, Feys P. The influence of an ankle-foot orthosis on the spatiotemporal gait parameters and functional balance in chronic stroke patients. J Phys Ther Sci. 2016;28(5):1621-8. 4. Kobayashi T, Singer ML, Orendurff MS, Gao F, Daly WK, Foreman KB. The effect of changing plantarflexion resistive moment of an articulated ankle–foot orthosis on ankle and knee joint angles and moments while walking in patients post stroke. Clin Biomech. 2015;30(8):775-80. 5. Zissimopoulos A, Fatone S, Gard S. The effect of ankle– foot orthoses on self-reported balance confidence in persons with chronic poststroke hemiplegia. Prosthet Orthot Int. 2014;38(2):148-54. 6. Kuan T-S, Tsou J-Y, Su F-C. Hemiplegic gait of stroke patients: the effect of using a cane. Arch Phys Med Rehabil. 1999;80(7):777-84. 7. Ferreira LAB, Neto HP, Christovão TCL, Duarte NA, Lazzari RD, Galli M, et al. Effect of ankle-foot orthosis on gait velocity and cadence of stroke patients: a systematic review. J Phys Ther Sci. 2013;25(11):1503-8. 8. Chin R, Hsiao-Wecksler ET, Loth E, Kogler G, Manwaring SD, Tyson SN, et al. A pneumatic power harvesting ankle-foot orthosis to prevent foot-drop. J Neuroeng Rehabil. 2009;6(1):19. 9. Franceschini M, Massucci M, Ferrari L, Agosti M, Paroli C. Effects of an ankle-foot orthosis on spatiotemporal parameters and energy cost of hemiparetic gait. Clin Rehabil. 2003;17(4):368-72. 10. Alam M, Choudhury IA, Mamat AB. Mechanism and design analysis of articulated ankle foot orthoses for drop-foot. ScientificWorldJournal. 2014;25(11):1503-8. 11. Nolan KJ, Yarossi M. Preservation of the first rocker is related to increases in gait speed in individuals with hemiplegia and AFO. Clin Biomech. 2011;26(6):655-60. 12. Blaya JA, Herr H. Adaptive control of a variable-impedance ankle-foot orthosis to assist drop-foot gait. IEEE Transactions on neural systems and rehabilitation engineering. 2004;12(1):24-31. 13. Nikamp CD, Buurke JH, van der Palen J, Hermens HJ, Rietman JS. Early or delayed provision of an ankle-foot orthosis in patients with acute and subacute stroke: a randomized controlled trial. Clin Rehabil. 2017;31(6):798-808. 14. Bethoux F, Rogers HL, Nolan KJ, Abrams GM, Annaswamy TM, Brandstater M, et al. The effects of peroneal nerve functional electrical stimulation versus ankle-foot orthosis in patients with chronic stroke: a randomized controlled trial. Neurorehabil Neural Repair. 2014;28(7):688-97. 15. Hesse S. Rehabilitation of gait after stroke: evaluation, principles of therapy, novel treatment approaches, and assistive devices. Topics in Geriatric Rehabilitation. 2003;19(2):109-26. 16. Slijper A, Danielsson A, Willén C. Ambulatory function and perception of confidence in persons with stroke with a custommade hinged versus a standard ankle foot orthosis. Rehabil Res Pract. 2012;25(11):1503-8. 17. de Wit DC, Buurke J, Nijlant JM, IJzerman MJ, Hermens HJ. The effect of an ankle-foot orthosis on walking ability in chronic stroke patients: a randomized controlled trial. Clin Rehabil. 2004;18(5):550-7. 18. Shorter KA, Xia J, Hsiao-Wecksler ET, Durfee WK, Kogler GF. Technologies for powered ankle-foot orthotic systems: Possibilities and challenges. IEEE/ASME Transactions on mechatronics. 2011;18(1):337-47. 19. Yamamoto S, Ebina M, Kubo S, Hayashi T, Akita Y, Hayakawa Y. Development of an ankle-foot orthosis with dorsiflexion assist, part 2: structure and evaluation. J Prosthet Orthot. 1999;11(2):24-8. 20. H. Teyssedre and G. Lefort. “Dynamic Orthesis,” Eur. Patent Office, France. 2005: 1-9. 21. Chen C-L, Chen F-F, Lin C-H, Lou S-Z, Chang H-Y, Yeung K-T. Effect of anterior ankle-foot orthoses on weight shift in persons with stroke. Arch Phys Med Rehabil. 2015;96(10):1795-801. 22. Tyson S, Sadeghi-Demneh E, Nester C. A systematic review and meta-analysis of the effect of an ankle-foot orthosis on gait biomechanics after stroke. Clin Rehabil. 2013;27(10):879-91. 23. Yang J, Bai D, Bai S, Li Y, Wang S, editors. Design of mechanical structure and tracking control system for lower limbs rehabilitative training robot. 2009 International Conference on Mechatronics and Automation; 2009;17(4):368-72. 24. Radtka SA, Oliveira GB, Lindstrom KE, Borders MD. The kinematic and kinetic effects of solid, hinged, and no ankle–foot orthoses on stair locomotion in healthy adults. Gait Posture. 2006;24(2):211-8. 25. Taiar R, Adel C, Belassian G, Lamare D, Dumont J, Chené A, et al. Can a new ergonomical ankle–foot orthosis (AFO) device improve patients’ daily life? A preliminary study. Theor Issues Ergon Sci. 2019;20(6):763-72. 26. Hirai H, Ozawa R, Goto S, Fujigaya H, Yamasaki S, Hatanaka Y, et al., editors. Development of an ankle-foot orthosis with a pneumatic passive element. ROMAN 2006-The 15th IEEE International Symposium on Robot and Human Interactive Communication; 2006; 17(4):368-72. 27. Lewallen J, Miedaner J, Amyx S, Sherman J. Effect of three styles of custom ankle foot orthoses on the gait of stroke patients while walking on level and inclined surfaces. J Prosthet Orthot. 2010;22(2):78-83. 28. Gök H, Küçükdeveci A, Altinkaynak H, Yavuzer G, Ergin S. Effects of ankle-foot orthoses on hemiparetic gait. Prosthet Orthot Int. 2003;17(2):137-9. | ||
آمار تعداد مشاهده مقاله: 1,963 تعداد دریافت فایل اصل مقاله: 1,656 |