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Introduction

Epilepsy is a common neurological disorder caused by disruptions 
in brain electrophysiology, leading to recurrent, unpredictable 
seizures. These seizures can result in loss of awareness, whole-

body convulsions, or, in severe cases, even death, highlighting the need 
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ABSTRACT
Background: Manual analysis of electroencephalography (EEG) for epilepsy  
diagnosis can be subjective and time-consuming, leading to potential errors. An  
automatic classification system with high detection accuracy is essential for improving 
diagnostic efficiency and reliability. 
Objective: This study aimed to evaluate a comprehensive set of entropy measures, 
along with embedding parameters, to identify the most effective single measure for 
epilepsy diagnosis.
Material and Methods: This analytical study used EEG data from the  
University of Bonn, including healthy controls (HCs) with open eyes and epileptic  
seizure patients, each with 100 single-channel segments. Discrete wavelet trans-
form was applied, extracting ten entropy measures and two embedding parameters. 
Statistical tests evaluated feature significance, and a linear discriminant analysis 
(LDA) classifier was used for classification. Robustness was assessed by introducing 
Gaussian noise at varying signal-to-noise ratios (SNRs) and analyzing classification  
performance. 
Results: Our findings indicated that embedding parameters, permutation entropy, 
fuzzy entropy, sample entropy, norm entropy, sure entropy, log entropy, and threshold 
entropy significantly differentiated epileptic patients from HCs. Among these, sample 
entropy, norm entropy, sure entropy, log entropy, threshold entropy, and embedding 
delay achieved classification accuracies between 97% and 100% using LDA classi-
fier. Furthermore, even with substantial Gaussian noise, the classifier maintained an  
accuracy above 84%, demonstrating the robustness of these features in noisy  
conditions.  
Conclusion: This study demonstrated that embedding-based and entropy-based 
features can serve as effective individual measures for discriminating epileptic EEG 
signals from HCs. These findings underscore the potential of these measures in  
automated epilepsy diagnosis systems, resulting in a robust and reliable tool for  
clinical applications.
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for precise evaluation [1]. Electroencephalog-
raphy (EEG) is the primary noninvasive tool 
for detecting and monitoring neurological 
disorders, including epilepsy. It records brain 
electrical activity through scalp-mounted elec-
trodes, each capturing the combined postsyn-
aptic activity of numerous neurons. With its 
high temporal resolution, EEG provides direct 
insights into brain function and is widely used 
in clinical epileptology. However, visual EEG 
interpretation is subjective, time-consuming, 
and dependent on expert evaluation, mak-
ing it prone to errors. Furthermore, subtle but 
clinically relevant EEG abnormalities may be 
overlooked [2,3]. To address these limitations, 
automated EEG-based epilepsy detection sys-
tems are essential for improving diagnostic ac-
curacy and efficiency.

Distinguishing epileptic patients from 
healthy individuals fundamentally is a pattern 
recognition challenge, where feature extrac-
tion plays a crucial role in diagnostic accu-
racy. The quality and relevance of extracted 
features significantly impact classification 
performance. Existing literature categorizes 
features used in epilepsy diagnosis into sev-
eral groups based on different analytical ap-
proaches, as follows: 1) time-domain features: 
statistical features [4,5], autoregressive (AR) 
parameter estimation [6,7], Burg’s method 
[8], and time-domain power band features 
[9], 2) frequency-domain features: average 
variance of instantaneous frequencies [8], 
Fourier transform-based features [10], and 
higher order spectra [11]), 3) time-frequen-
cy domain features: wavelet variances [12, 
13], relative wavelet energy [14,15], empiri-
cal mode decomposition (EMD) [16], EMD  
combined with discrete wavelet transform 
(DWT) [17], and multi-wavelet transform 
[18]), and 4) complexity features: Higuchi 
fractional dimension, Hurst exponent, approx-
imate entropy, and sample entropy [11,18], 
spectral entropy [15,19], log-energy entropy 
[17,20], Sure entropy [20], embedding entro-
py, Kalmogorov—Sinai entropy, approximate 

entropy [19], recurrence quantification analy-
sis (RQA) measures [21,22], wavelet packet 
entropy [23], Reni entropy, Tallis entropy [24], 
Lyapunov exponent [25], fractional linear pre-
diction [26], and permutation entropy [27]).

Biological signals, particularly EEG, are in-
herently nonlinear and non-periodic. As a re-
sult, traditional linear analysis methods, such 
as the Fast Fourier Transform (FFT), often fail 
to effectively distinguish between EEG sig-
nals from healthy individuals and those with 
neurological disorders. Therefore, nonlinear 
analysis techniques are essential for capturing 
the complex dynamics of EEG signals and im-
proving classification accuracy [28]. 

State-space reconstruction is a dynamic anal-
ysis technique used for estimating embedding 
measures efficiently. It represents the underly-
ing dynamics of a time series by reconstructing 
its phase space [21]. While phase-space recon-
struction has been successfully applied to EEG 
analysis [29-31], it has not, to our knowledge, 
been specifically used to differentiate between 
epileptic and healthy EEG signals. Investigat-
ing the feasibility of this approach could pro-
vide valuable insights into the discriminative 
power of embedding parameters for epilepsy 
detection. Furthermore, although various en-
tropy measures have been explored in epilepsy 
classification, no study, to our knowledge, has 
systematically compared the effectiveness of 
different entropy measures and classifiers us-
ing the same EEG dataset. Addressing this gap 
could enhance the reliability and accuracy of 
automated epilepsy detection.

In this study, we evaluate the accuracy of 
embedding delay, embedding dimension, and 
various entropy measures in distinguishing 
epileptic EEG signals from normal ones using 
a linear discriminant analysis (LDA) classi-
fier, both in the presence and absence of noise.

Material and Methods
This study is an analytical research aimed 

at distinguishing epileptic EEG signals from 
normal ones. The following sections outline 
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the dataset and methodological approach.

EEG data
In this study, the EEG signals were collected 

by Andrzejak et al. [32] at the University of 
Bonn, Germany. All signals were recorded 
using a 128-channel amplifier system. The 
dataset consists of five EEG segment sets 
obtained from five healthy individuals under 
eyes-closed (Set Z) and eyes-open (Set O) 
conditions, as well as five epileptic patients 
in different seizure stages: interictal (Set N), 
ictal (Set F), and seizure (Set S). Each set 
contains 100 single-channel EEG segments. 
For this study, we selected two specific sets: 
healthy control group (Set O), EEG recordings 
from individuals with open eyes, epileptic sei-
zure group (Set S), and EEG recordings from  
patients experiencing seizures.

Definition of selected features

State-Space Reconstruction
The behavior of nonlinear dynamic systems 

can be represented as a trajectory in phase 
space, where each point describes the system’s 
state at a given instant (e.g., R). Phase space 
is a mathematical construct defined by the 
system’s dynamic variables. If a system con-
sists of n dynamic variables, its state at any 
given time is represented as a point in Rn-di-
mensional Euclidean space. As these variables 
evolve over time, the trajectory of this point 
forms an attractor, characterizing the system’s  
dynamics.

To reconstruct the state-space representa-
tion, we utilized Takens’ embedding theorem, 
a fundamental method in nonlinear time-series 
analysis. Given a time series x(n); n=1,2,…,N, 
the state-space vectors are constructed using 
time-delayed embeddings, defined as:

( ) ( ) ( ) ( )( )( ) ( ), , 2 ,..., 1 1,..., 1tX x t x t x t x t m t N mτ τ τ τ= + + + − = − −


(1)

Where Xt represents the reconstructed state-
space vector, m is the embedding dimension, 
and τ denotes the time delay.

A critical aspect of state-space reconstruc-

tion is determining the optimal values of τ and 
m. The ideal time delay (τ) ensures that each 
independent axis in the m-dimensional phase 
space retains the signal’s information with 
minimal correlation between dimensions, pre-
venting trajectory intersections [33]. Several 
methods exist for selecting τ and m. In this 
study, we determined time delay (τ) using the 
first minimum of average mutual information 
(AMI) and embedding dimension (m) using 
the false nearest neighbor (FNN) method [34].

Average Mutual Information (AMI)
Fraser and Swinney proposed that the first 

local minimum of the average mutual infor-
mation (AMI) function provides the optimal 
time delay (τ) for state-space reconstruction 
[34]. 

AMI quantifies the predictable information 
shared between a time-series value and its 
delayed counterpart, measuring how much 
knowledge of a past value helps in predicting 
future values. The function is computed for 
different values of τ as follows:
( ) ( ) ( )( ) ( ) ( )( )

( )( ) ( )( )1

,
, log( )N

n

P x n x n
I P x n x n

P x n P x n
τ τ

τ τ
τ

−

−

+
= + ×

× +∑ (2)
Where P(xᵢ, xᵢ₊ₜ) represents the joint probabil-

ity distribution of values at time i and i+τ, and 
P(xᵢ), P(xᵢ₊ₜ) are the marginal probability distri-
butions. The optimal time delay (τ) is selected 
at the first minimum of I(τ), ensuring minimal 
redundancy while preserving the system’s dy-
namics.

False Nearest Neighbor (FNN)
The False Nearest Neighbors (FNN) method 

determines the optimal embedding dimension 
(m) by analyzing the behavior of point dis-
tances in phase space as the dimensionality 
increases [34].

In this method, the distance between two 
points in phase space is examined as the spatial 
dimension D increases to D+1. If the distance 
between two neighboring points in dimension 
D significantly changes when projected into 
dimension D+1, the points are classified as 
false neighbors. This indicates that the embed-
ding dimension D is insufficient to properly 
reconstruct the system’s dynamics.
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The distances between a point X(t) and its 
rth nearest neighbor X(tᵣ) in dimensions D and 
D+1 are estimated as follows:

( ) ( ) ( ) 12 2 2
0

, [ ]
r

D
D r t k t Dk

R t r X t X t x xτ τ
−

− −=
= − = −∑  (3)

( ) ( )2 2 2
1 , , [ ]

rD D t D t DR t r R t r x xτ τ+ − −= + −                (4) 

Where RD and RD+1 represent the Euclid-
ean distances in dimensions D and D+1, re-
spectively. If the ratio exceeds a predefined 
threshold (Rtot), the points are considered false 
neighbors, indicating the need for a higher em-
bedding dimension. The optimal embedding 
dimension (m) is the smallest D, where the 
fraction of false neighbors approaches zero, 
ensuring a well-reconstructed phase space 
(see equation 5).

( ) ( )
( )

2 2 1
1 2

2

, ,
[ ]

,
D D

tot
D

R t r R t r
R

R t r
+ −

>                         (5)

Entropy
Entropy is a nonlinear measure that quanti-

fies the complexity of a signal. A decrease in 
entropy indicates a more regular time series, 
suggesting a higher information rate within 
the signal [35].

Among various entropy measures, approxi-
mate entropy (AppEn), sample entropy (Sam-
pEn), and fuzzy entropy (FuzzyEn) are widely 
used. These methods estimate the predictabil-
ity of a signal by analyzing the conditional 
probability of similarity between sequences. 
Specifically, if two sequences in a time series 
remain similar for m data points, these entropy 
measures evaluate the likelihood that they will 
also be similar at m+1 points.

These entropy metrics provide valuable in-
sights into the underlying dynamics of EEG 
signals, aiding in distinguishing normal from 
pathological patterns. The following sec-
tion provides a brief introduction to ten types 
of entropy measures for signal complexity  
analysis:

Approximate entropy (AppEn) 
To identify specific patterns within a time se-

ries, approximate entropy (AppEn) establishes 
a relationship between probabilities, measur-

ing the degree of similarity between different 
segments of the signal. This similarity is deter-
mined using a tolerance threshold (r), allow-
ing for the quantification of signal complexity 
[36]. AppEn is calculated as follows: 

( ) ( ) ( )/ 1m m
i iC r n r N m= − +                               (6)

( ) ( )11
1

( 1) lnN mm m
ii

n N m C rϕ
− +−

=
= − + ∑       (7)

( ) ( ) ( )1, m mApEn m r r rϕ ϕ += −                      (8)

Where ni
m(r) represents the number of  

m-dimensional similar patterns whose pair-
wise distance is less than r.

Sample Entropy (SampEn)
Sample Entropy (SampEn) is an improved 

version of AppEn that addresses its limita-
tions. Unlike AppEn, SampEn is less sensitive 
to signal length, disregards self-matches, and 
provides an unbiased estimate of complex-
ity, making it a more reliable measure [37].  
SampEn is defined as:

( ) ( ) ( )1, , ln( / )m mSampEn m r N C r C r+= −   (9)
Where Cm(r) represents the number of m-

point sequences that remain similar within a 
distance less than r.

Fuzzy Entropy (FuzzyEn)
Fuzzy Entropy (FuzzyEn) is a relatively re-

cent method for quantifying the fuzziness and 
uncertainty in a time series by defining the 
similarity between vectors using a fuzzy ap-
proach. Unlike some traditional entropy mea-
sures, FuzzyEn is independent of data length, 
making it a robust complexity measure [38]. 
FuzzyEn is computed as follows:

( ) ( ) ( )1, , , ln( , , )m mFEn m n r N n r n rϕ ϕ += − (10)

( ) ( ) ( )1, , , ln( , , )m mFEn m n r N n r n rϕ ϕ += − (11)
Where Dij

m identifies the similarity between 
two vectors with a distance less than r, embed-
ding dimension m, and gradient boundary n.

In this study, the parameter values were 
set as follows: n=2, r=0.15 of the standard  
deviation of the time series, and m=2.

Shannon entropy (ShanEn)
This entropy quantifies a set of relational  
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parameters that vary linearly with the loga-
rithm of the number of probabilities. It is 
mathematically expressed as:  

( ) ( )2( ) log ( )  0 1k kk
ShanEn x P x P x M N= − × 〈 〈 −∑ (12)

Where P(xk) represents the probability of 
xk, and M denotes the number of levels of the 
discrete-valued random variable X.

Spectral entropy (SEn)
Spectral Entropy (SEn) is a normalized form 

of Shannon entropy that evaluates the spectral 
complexity of a signal by analyzing the am-
plitude components of its power spectrum. 
It provides insights into the distribution of 
frequency components within the signa [3].  
SpecEn is computed as follows:

( )( ) log( )1 k kk
SEn P f P f k M= − × 〈 〈∑    (13)
Where P(fₖ) represents the normalized  

power spectral density at frequency fₖ, and M 
is the total number of frequency components.

Permutation Entropy (PermEn)
Permutation entropy (PermEn) quantifies 

the complexity of a time series by identify-
ing couplings between successive data points, 
capturing the presence or absence of specific 
permutation patterns in the signal. Given a 
time series x with an embedding dimension 
of m and time delay of τ, the reconstructed  
sequence is defined as follows [39]:

( )( ) ( )( ) ( )( ) ( ){ }1 1 , 2 ,...,X N m x N m x N m x N sτ τ τ− − = − − − − (14)

PermEn is given by:

21
logn

j jj
PermEn p p

=
= −∑                      (15)

Where pj represents frequency related with 
each possible sequence pattern, and n denotes 
the permutation order, with n≥2.

PermEn is an effective measure for analyz-
ing nonstationary, nonlinear, and chaotic time 
series, even in the presence of dynamical 
noise. It demonstrates robustness and compu-
tational efficiency, producing reliable results 
with minimal sensitivity to noise. Due to its 
low computational complexity, PermEn is  
particularly well-suited for the analysis of 
large datasets, making it a valuable tool in 
various signal processing applications [39]. 

In this study, we selected an embedding di-
mension of 3 and a time delay of 1 to effec-
tively capture the temporal dynamics of the 
signal.

Furthermore, wavelet packet decomposition 
was applied to compute the following five en-
tropy measures, which are defined as follows 
[40]:

Norm entropy (NormEn)

, 1P
ii

NormEn x P= ≥∑                              (16)

Threshold entropy (ThreshEn)

{ }( 0)iThreshEn i such that x P P= ≥ 〉     (17)
ThreshEn quantifies the number of time 

instants, at which the signal amplitude ex-
ceeds a predefined threshold. In this study, the  
threshold value was set to 0.2. 

Sure entropy (SureEn)
{ } 2 2# min( , )SEn i ii

E N i such that x xε ε= − ≤ +∑ (18)

Log Energy entropy (LogEn)
2

1
log( )N

LgEn ii
E x

=
=∑                                         (19)

Where x represents the signal, and xi denotes 
the coefficients of x in the orthonormal basis. 
Additionally, p, P, and N correspond to pow-
er, the threshold value, and the signal length,  
respectively.

Classification 
Linear Discriminant Analysis (LDA) 
Linear Discriminant Analysis (LDA) is a su-

pervised classification technique that projects 
data onto a new feature space by maximizing 
the separation between predefined groups. 
It achieves this by transforming the original 
predictor variables into a single discriminant 
variable that maximizes the variance between 
classes while minimizing the variance within 
each class.

LDA assumes that the independent variables 
follow a normal distribution and that different 
classes share a common covariance structure. 
The algorithm calculates the mean vector for 
each class and assigns a new observation to 
the class whose mean vector is closest in the 
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discriminant space. By ensuring the great-
est possible separation between class means, 
LDA enhances classification performance in a 
statistically optimal manner [41].

Proposed method
Figure 1 indicates a flowchart outlining the 

analytical framework of this study.
In this study, EEG datasets from two groups, 

healthy individuals with open eyes and pa-
tients with epilepsy, were preprocessed using 
a Butterworth filter with a cutoff frequency 
range of 0.5 to 40 Hz to remove unwanted 
noise and artifacts. The signals were then de-
composed into frequency sub-bands using 
Discrete Wavelet Transform (DWT), a linear 
time-frequency analysis method particularly 
well-suited for nonstationary signals like EEG 
due to its high resolution in both time and fre-
quency domains.

DWT was applied to decompose the EEG sig-
nals into five levels, utilizing the Daubechies 4 
(Db4) wavelet filter. This decomposition pro-
duced approximation and detail coefficients at 
each level, which were then used to extract rel-
evant features. The extracted features included 
the embedding dimension and embedding de-
lay of the state space, along with ten types of 
entropy measures, namely: AppEn, SampEn, 
ShanEn, FuzzyEn, SEn, PermEn, ThreshEn, 
NormEn, SureEn, and LogEn.

Subsequently, statistical analysis was per-
formed to evaluate the significance of differ-
ences in the extracted features between the 
two groups. The Mann-Whitney U test was 

employed to compare the p-values between 
the epileptic and healthy groups, assessing the 
statistical significance of each feature. Addi-
tionally, the mean and standard deviation of 
the extracted features were computed for both 
groups to facilitate a comparative analysis.

The classification of EEG signals was per-
formed using an LDA classifier. To enhance 
robustness and prevent overfitting, K-fold 
cross-validation (K=10) was applied. The 
classifier’s performance was evaluated using 
key metrics, including classification accuracy, 
specificity, and sensitivity.

Finally, to assess the robustness of the fea-
tures that achieved the highest accuracy on 
clean EEG data, Gaussian noise was intro-
duced into the signals. The classification per-
formance was then analyzed across a range of 
signal-to-noise ratios (SNRs) from 1 to 40 dB, 
identifying the features that maintained their 
accuracy under varying noise conditions.

Results
The statistical test results for embedding 

parameters and the ten predefined entropy 
measures comparing the healthy and epileptic 
groups are summarized in Table 1. For each 
feature, the mean and standard deviation were 
computed for both groups. The results re-
vealed that the healthy group exhibited lower 
values for embedding parameters compared to 
the epileptic group, whereas entropy measures 
were generally higher in the healthy group.

The analysis further demonstrated that 
Embedding Parameters, PermEn, FuzzyEn,  

Figure 1: Block diagram of the proposed method for distinguishing epileptic electroencephalog-
raphy (EEG) signals from normal EEG data.
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SampEn, NormEn, SureEn, LogEn, and 
ThreshEn exhibited statistically significant dif-
ferences between the two groups. The P-val-
ues for these features indicated their potential 
for significant differentiation (P-value<0.05), 
suggesting their relevance in distinguish-
ing epileptic EEG signals from normal EEG  
activity.

The performance metrics of the LDA classi-
fier are summarized in Table 2. These results 
were obtained by investigating each feature in-
dividually. The LDA classifier achieved 100% 

accuracy for SampEn, LogEn, and ThreshEn, 
and over 97% accuracy for SureEn, NormEn, 
and Embedding Delay.

Comparative analysis
The performance comparison of this study 

with existing research on epileptic seizure de-
tection is summarized in Table 3. Table 3 pro-
vides an overview of various methodologies, 
datasets, classifiers, and extracted features 
used in previous studies, highlighting how 
our approach compares in terms of accuracy,  

Features
Healthy Patient

P-Value
Mean SD Mean SD

Approximate Entropy 0.89 0.10 0.90 0.11 1.02×10-1

Sample Entropy 0.06 0.01 0.00 0.00 2.8×10-2

Permutation Entropy 1.37 0.04 1.04 0.09 4×10-3

Fuzzy Entropy 0.03 0.01 0.00 0.00 2.56×10-3

Shannon Entropy -5.9×10+8 2×10+8 -6×10+8 5×10+9 5.76×10-2

Spectral Entropy 0.77 0.00 0.76 0.01 4.8×10-2

Norm Entropy 7.7×10+3 2×10+1 6.17×10+2 0.1 1.81×10-5

Threshold Entropy 5.7×10+5 3.4×10+3 1.7×10+3 0.26 9.01×10-6

Log Entropy 9.3×10+5 1.6×10+3 6.7×10+3 0.19 3.27×10-6

Sure Entropy 8.4×10+2 2.4×10+1 9.37×10+1 0.21 2.76×10-5

Embedding delay 6.90 1.04 1.25×10+1 6.75 4.48×10-24

Embedding dimension 7.14 0.53 8.02 1.05 2.21×10-4

Table 1: Mean and Standard Deviation (SD) of entropy measures and embedding parameters 
extracted from the healthy and epileptic patient groups.
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Accuracy 86.11 100 81.67 90.56 77.78 83.33 98.89 100 100 98.89 95.85 97.78
Specificity 82.09 100 80.93 92.01 74.44 86.31 98.06 100 100 97.78 96.91 95.31
Sensitivity 90.35 100 82.93 89.74 82.51 90.72 100 100 100 100 94.79 100

Table 2: Performance of the linear discriminant analysis (LDA) classifier for entropy measures 
and embedding parameters extracted from the healthy and epileptic patient groups. 
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Author Feature Classifier EEG dataset
Accuracy 

(%)
Specificity 

(%)
Sensitivity 

(%)

Subasi et 
al. [4]

SD and average value LR, MLPNN [4] ------- 90.3, 91.4 89.2, 92.8

Subasi et 
al. [5]

Statistical features with ICA, 
PCA, LDA

SVM University of Bonn [32]
99.50, 

98.75, 100
99, 98.5, 100 100, 99, 100

Subasi et 
al. [6]

AR parameter estimation and 
maximum likelihood estimation

Wavelet neural networks and 
back propagation

[6] 93 92.4 93.6

Ubeyli et 
al. [7]

AR method SVM University of Bonn [32] 99.56 99.63 99.50

Faust et al. [8]
Frequency domain parameters, 

Burg’s method
SVM University of Bonn [32] 93.3 98.33 96.67

Donos et 
al. [9]

Time-domain and power band 
features

Random forest EMU [42] ------- ------- 86.27

Polat et al. 
[10]

Fourier transform-based 
features

Decision tree University of Bonn [32] 98.72 99.31 99.40

Acharya et al. 
[11]

HOS+Higuchi FD+Hurst 
EXPONENT+AppEn+SampEn

DT, PNN, KNN, Fuzzy, GMM, 
SVM

University of Bonn [32]
97.3, 98.1, 
98.1, 100, 

99, 99

94, 96, 96, 
100, 98, 98

99, 99, 99, 
100, 100, 

99.5
Shengkuh et 

al. [12]
Wavelet variances KNN University of Bonn [32] 100 ------- -------

Orhan et al. 
[13]

Wavelet-based features K-means clustering and MLP University of Bonn [32] 96.67 97.98 94.12

Guo et al. [14] Relative Wavelet Energy ANN University of Bonn [32] 95.2 92.12 98.17

Jia et al. [16]
Statistical features in the 

CEEMD domain
Random forest University of Bonn [32] 98 99 100

Gandhi et al. 
[15]

DWT+(Spectral entropy, 
Energy)

PNN University of Bonn [32] 100 ------- -------

Das et al. [17]
EMD-DWT method,  
log-energy entropy

KNN (Cityblock distance) University of Bonn [32] 89.4 88.1 90.7

Guo et al. [18]
Multi wavelet transform+  

ApproximateEn
MLPNN University of Bonn [32] 98.2 95.50 99.00

Chandaka et 
al. [43]

Cross-correlation SVM University of Bonn [32] 95.96 100 92

Gupta et al. 
[20]

Cross corrEn, log energy En, 
SureEn

Least square-SVM (RBF 
kernel), KNN (Euclidean 

distance)

Bern Barcelona data-
base [44]

94.41, 93.12 95.57, 95.15 93.25, 91.09

Kannathal et 
al. [19]

SpectralEn, EmbeddingEn, 
Kalmogorov—SinaiEn, Ap-

proximateEn
ANFIS University of Bonn [32] 92.2 ------- -------

Gruszczyńska 
et al. [21]

RQA measures SVM
Medical University of 

Bialystok [45]
86.8 ------- -------

Acharya et al. 
[22]

RQA measures GMM, KNN University of Bonn [32] 92.6, 95.2 92.2, 98.9 97.2, 98.3

Wang et al. 
[23]

Wavelet packet entropy KNN University of Bonn [32] 99.44 ------- -------

Table 3: Comparison of the performance of our work with previous studies on epilepsy  
diagnosis using electroencephalography (EEG) signals.
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sensitivity, and specificity.
Figure 2 illustrates the LDA classifier’s per-

formance for SampEn, LogEn, ThreshEn, Su-
reEn, NormEn, and Embedding Delay across 
a range of signal-to-noise ratios (SNRs), from 
1 to 40 dB. These features maintained an accu-
racy of over 84% for SNRs greater than 20 dB.

Discussion
Our results showed that measures of Embed-

ding dimension, Embedding delay, PermEn, 
FuzzyEn, SampEn, NormEn, SureEn, LogEn, 
and ThreshEn effectively discriminate epilep-
tic patients from normal subjects. The signifi-
cant differentiation of EEG signals using these 
features can be attributed to the following  
factors:

Embedding Parameters
These parameters play a crucial role in phase 

space reconstruction, where the embedding 
dimension represents the minimum number 
of uncorrelated orientations necessary to re-

construct the system dynamics. While higher 
embedding dimensions can capture more in-
formation, excessive embedding introduces 
redundancy.

Two methods, AMI and FNN, are used to 
calculate the embedding delay and embed-
ding dimension. Compared to singular value 
decomposition (SVD)-based approaches, the 
AMI method is more effective in capturing 
nonlinear interrelations, ensuring that the re-
constructed state space consists of uncorrelat-
ed orientations [49]. 

As shown in Equation (1), a greater number 
of delayed time series contribute to the state-
space vector for epileptic EEG signals, result-
ing in higher embedding parameter values 
in epileptic EEG compared to normal EEG, 
reflecting the transition from randomness to 
deterministic chaos during seizures [50] (see 
Table 1). 

Entropy Measures
Entropy, a measure of signal complexity, is 

Epilepsy Diagnosis by EEG Entropy

Author Feature Classifier EEG dataset
Accuracy 

(%)
Specificity 

(%)
Sensitivity 

(%)
Redilico et al. 

[24]
ReniEn, TallisEn LR University of Bonn [32] 95, 94.5 94, 94 97, 97

Guler et al. 
[25]

Lyapunov exponent RNN University of Bonn [32] 96.79 ------- -------

Joshi et al. 
[26]

Fractional linear prediction SVM (RBF kernel) University of Bonn [32] 96 95 95.33

Veisi et al. [27] Permutation entropy LDA University of Bonn [32] 97 ------- -------

Polychronaki 
et al. [46]

Fractal dimension KNN

Epilepsy Telemetry 
Unit, Department of 

Neurosurgery, Univer-
sity of Athens, ‘Evange-

lismos’ Hospital

------- ------- 100

Chua et al. 
[47]

Higher order statistics based 
features

GMM University of Bonn [32] 93.1 92 97.67

Acharya et al. 
[48]

Deep convolutional neural 
network

University of Bonn [32] 88.67 90 95

Our study
LogEn, ThreshEn, SampEn, 

NormEn, SureEn, Embedding 
delay

LDA University of Bonn [32]
100, 100, 

100, 98.89, 
98.89, 97.78

100, 100, 
100, 98.06, 

97.78, 95.31

100, 100, 
100, 100, 
100, 100

LR: Logistic Regression, MLPNN: Multilayer Perception Neural Networks, AR: Autoregressive, ANN: Artificial Neural Network, 
k-NN: K-Nearest Neighbor, LS: Least Squares, SVM: Support Vector Machine, GLM: Generalized Linear Model, HOS: Higher 
Order Spectra, PNN: Probabilistic Neural Network, ASE: Average Sample Entropy, AVIF: Average Variance Of Instantaneous 
Frequencies, RQA: Recurrence Quantification Analysis, RNN: Recurrent Neural Networks, GMM: Gaussian Mixture Model
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generally lower in epileptic EEGs compared 
to the healthy group due to the presence of 
more rhythmic and periodic patterns during 
seizures [50].

AppEn, SampEn, and FuzzyEn are par-
ticularly effective in characterizing nonlinear 
signals. Since epileptic EEG signals exhibit 
greater periodicity, they tend to have lower 
entropy values compared to normal EEG sig-
nals [50]. While AppEn is prone to bias and 
is highly sensitive to minor fluctuations [51], 
SampEn and FuzzyEn offer greater precision 
and robustness in capturing signal complexity 
[52]. 

PermEn and other entropy measures, includ-
ing SpectralEn, NormEn, SureEn, LogEn, and 
ThreshEn are effective in detecting variabil-
ity in nonstationary signals [53]. However, 
ShanEn has notable limitations, such as the 
potential overestimation of entropy and its in-
ability to capture temporal dependencies in 
the signal. Given the increased predictability 
of epileptic EEG signals, these signals typical-
ly exhibit lower entropy values compared to  
normal EEGs [54].

Feature Dimensionality
In this study, all extracted features were  

individually analyzed to assess their discrimi-
natory power. The dimensionality of the fea-
ture space poses a significant challenge for 
classification algorithms. A higher-dimension-
al feature space increases model complexity, 
leading to greater computational costs for both 
training and testing. Additionally, an excessive 
number of features can introduce redundancy, 
which may degrade the estimation accuracy of 
model parameters. If a single feature can pro-
vide reliable classification performance, the 
need for multiple features is reduced, simpli-
fying the model and enhancing computational 
efficiency.

Classification Performance
The LDA classifier demonstrated high clas-

sification accuracy when using individual fea-
tures, particularly SampEn, NormEn, SureEn, 
LogEn, ThreshEn, and Embedding Delay. 
This finding indicates that these features pos-
sess strong discriminatory power, enabling the 
classification of EEG signals independently, 
even with a simple linear classifier like LDA.

These features effectively distinguished 
epileptic patients from healthy individuals, 
achieving reliable classification accuracy. 
Furthermore, our findings align with previous 

Figure 2: Linear discriminant analysis (LDA) classifier performance across a range of signal-to-
noise ratios (SNRs), from 1 to 40 dB, using SampEn, LogEn, ThreshEn, SureEn, NormEn, and 
Embedding delay for EEG signal classification.

Fatemeh Valipour, et al
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studies, which have also identified significant 
alterations in these features among epileptic 
patients.

Robustness to Noise
This study further highlighted the robust-

ness of the LDA classifier in distinguishing 
healthy and epileptic EEG signals, even in the 
presence of Gaussian noise. As illustrated in  
Figure 2, classification accuracy improves 
across the selected measures (SampEn, Nor-
mEn, SureEn, LogEn, ThreshEn, and Embed-
ding Delay) as the SNR increases. 

At low SNRs (e.g., 1 to 10 dB), the accuracy 
is generally lower, indicating that high noise 
levels negatively impact the classifiers’ ability 
to distinguish between healthy and epileptic 
EEG signals. However, at SNR levels of 20 
dB and above, significant improvements are 
observed in accuracy. Notably, SampEn and 
SureEn demonstrate strong performance at 
higher SNRs, with SampEn reaching over 87% 
accuracy at 20 dB, which further improves at 
higher SNRs. Additionally, ThreshEn and Lo-
gEn demonstrate competitive classification 
performance, making these measures particu-
larly suitable for EEG signal analysis in noisy 
environments. These findings emphasize the 
resilience of the selected entropy measures 
in preserving classification accuracy under  
varying noise conditions.

Conclusion
In this study, embedding parameters and en-

tropy measures from each wavelet sub-band 
were individually fed into the LDA classi-
fier to classify EEG signals into two groups: 
healthy individuals and epileptic patients. 
By comparing the sensitivity, specificity, and 
accuracy of the classifier, it yielded reliable 
results, effectively discriminating the EEG 
signals of epileptic patients from those of nor-
mal subjects. Additionally, the effect of ad-
ditive Gaussian noise on discrimination per-
formance was evaluated, demonstrating that 
certain measures, such as SampEn, LogEn, 
ThreshEn, SureEn, NormEn, and Embedding 

delay, maintained high classification accuracy 
even under varying noise conditions, thereby 
confirming the robustness of these features in 
noisy environments. Notably, if a single fea-
ture can guarantee reliable classification per-
formance, it avoids the challenges associated 
with high-dimensional feature vectors, such as 
increased model complexity, time consump-
tion, and redundancy. This analysis provides 
a valuable framework for the quantification of 
classification reliability and the identification 
of abnormal EEG activity. Future research 
could explore the generalizability of these 
findings across different datasets and noise 
models.
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