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Introduction

Cerebral Palsy (CP) is a neurological disorder, primarily charac-
terized by motor deficits, notably affecting walking abilities [1]. 
The most prevalent subtype is Hemiplegic Cerebral Palsy (HCP), 

characterized by unilateral motor dysfunction [2-4]. Children with HCP 
often exhibit an imbalance in interhemispheric Functional Connectiv-
ity (FC), with increased and decreased excitability in the unaffected 
and the affected hemisphere, respectively [5-9]. FC, which reflects the  
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Background: Hemiplegic Cerebral Palsy (HCP) causes significant motor  
impairments, due to disrupted Functional Connectivity (FC) between brain regions. 
Low-Frequency Repetitive Transcranial Magnetic Stimulation (LF-rTMS) has 
emerged as a potential therapeutic technique for restoring FC and motor recovery. 
Objective: This study aimed to evaluate the effects of LF-rTMS on FC in children 
with spastic HCP.
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tion. Functional Magnetic Resonance Imaging (fMRI) was used to assess intra- and  
interhemispheric FC during passive knee movements of the affected limb. 
Results: LF-rTMS induced region-specific reductions in interhemispheric 
FC, particularly between the contralesional ventral premotor area (cPMv) and 
both the ipsilesional primary somatosensory cortex (iS1) (for effect size: T=-2.60,  
P-value=0.048, FDR-corrected) and the ipsilesional primary motor area (iM1)  
(T=-2.45, P-value=0.048, FDR-corrected). These findings suggest modulation of in-
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coordinated activity between brain regions, is 
essential for motor control [10]. A pronounced 
interhemispheric inhibitory imbalance in HCP 
has been linked to poorer motor performance 
[11]. 

Low-frequency repetitive transcranial  
magnetic stimulation (LF-rTMS) has emerged 
as a viable rehabilitation technique for mo-
tor recovery in children with hemiparesis 
[12-20]. This approach aims to restore inter-
hemispheric balance by reducing overactivity 
in the unaffected hemisphere and promoting 
restoration in the damaged hemisphere [21]. 
By enhancing the activation of affected brain 
regions, LF-rTMS supports motor recovery  
[6,22-24]. Functional magnetic resonance im-
aging (fMRI) is a non-invasive tool for exam-
ining brain processes, particularly motor cor-
tex FC, in children with HCP [25]. However, 
despite the LF-rTMS’s potential, its specific 
effects on intra- and interhemispheric FC dur-
ing motor tasks remain poorly understood, 
particularly in pediatric populations with HCP. 

While evidence supports the use of LF-rT-
MS in neurorehabilitation, the specific effects 
of that on FC during passive movements of the 
affected knee remain unclear. Previous stud-
ies have focused mainly on general motor out-
comes, creating a gap in understanding how 
LF-rTMS impacts intra- and inter-hemispheric 
FC during task-specific neural reorganization. 
This study addresses this gap by examining 
the effects of LF-rTMS on FC during passive 
knee movements in children with HCP.

Material and Methods
This randomized controlled trial (RCT) 

compares the effects of LF-rTMS versus sham 
stimulation on functional connectivity in  
children with HCP (IRCT2016092525568N2).

Participants
The study involved ten children with spastic 

HCP (ages 4-13; 5F, 5M), which were random-
ly assigned to either the treatment group, or 
the control group. Inclusion criteria required  

significant lower limb spasticity and the  
absence of severe mental impairments. Be-
fore the experiment began, written informed 
consent was obtained from the parents or 
guardians of all participants. The study was 
approved by the Ethics Committee of the  
Tehran University of Medical Sciences 
(TUMS) in Iran.

Repetitive transcranial magnetic 
stimulation (rTMS) treatment

A specialized coil was used to stimulate the 
motor area responsible for lower limb control, 
located deep within the primary motor cortex. 
The optimal stimulation site was determined 
using single-pulse TMS, increasing inten-
sity until the motor-evoked potential (MEP) 
achieved a peak-to-peak amplitude larger than 
50 microvolts. The treatment group received 
low-frequency (1 Hz) rTMS four times week-
ly for three weeks, while the control group 
received sham rTMS with the coil positioned 
vertically [26-28].

Treatment protocol
Figure 1 illustrates the treatment protocol, 

which underwent LF-rTMS for 12 sessions, 
administered four times per week over three 
weeks. The control group received 12 sessions 
of sham stimulation under identical condi-
tions. Both pre-intervention and three weeks 
post-intervention were assessed [28-31].

MRI data acquisition 
Structural (T1-weighted) and fMRI were ob-

tained using a 3-Tesla GE scanner equipped 
with a 24-channel RF coil and single-shot 
echo-planar imaging (SS-EPI). 

Structural scans were captured using a Mag-
netization Prepared Rapid Acquisition Gradi-
ent Echo (MPRAGE) pulse sequence (repeti-
tion time (TR)=1800 ms, echo time (TE)=3.42 
ms, inversion time=450 ms, flip angle (FA)=7°, 
sagittal slices, 1 mm3 isotropic voxels, and 
a matrix size of 192×192 mm2). Functional  
images were obtained using an EPI sequence 
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with these parameters (TR=3000 ms, TE=30 
ms, and FA=90°, an acquisition matrix size of 
64×64, and 39 transverse slices with a voxel 
size of 3.59×3.59×3 mm3). 

MRI scans were performed at both pre-in-
tervention and after three weeks of treatment. 
During fMRI, a trained biomedical engineer 
supervised the affected limb’s passive knee 
plantar/dorsiflexion movements, following a 
block design paradigm of 24 seconds of rest 
followed by 24 seconds of motor tasks.

fMRI parameters 
After image processing, FC parameters (in-

tra- and interhemispheric FC) were calculated. 
Intra-hemispheric FC examined connections 
within the same hemisphere, while inter-hemi-
spheric FC assessed connectivity between 
hemispheres.

Functional Connectivity Magnetic 
Resonance Imaging (fMRI)

FC during passive movement of the affected 
knee was evaluated using MATLAB (R2018b) 
and the CONN toolbox (v22.a), which is based 
on the SPM (Statistical Parametric Mapping) 
framework [32-34]. Functional connectiv-
ity magnetic resonance imaging (fcMRI) as-
sesses brain network integration by examining  

temporal correlations in blood oxygenation 
level-dependent (BOLD) signal fluctuations 
across predefined regions of interest (ROIs). 
This study’s ROIs comprised the corpus cal-
losum (CC), premotor cortices (dorsal PMd 
and ventral PMv), motor (M1) cortex, primary 
(S1) and secondary (S2) somatosensory corti-
ces, and supplementary motor area (SMA) in 
the ipsilesional and contralesional hemisphere. 

This toolbox provides a full set of fcMRI 
analysis tools, including spatial preprocess-
ing, BOLD time series denoising, first-lev-
el connectivity analysis, and second-level  
connectivity analysis.
Spatial Preprocessing
The preprocessing pipeline followed stan-

dard volume-based protocols, which included 
realignment and unwarping to remove motion 
and susceptibility artifacts, as well as slice-
timing correction to align temporal BOLD 
acquisitions. Outlier detection identifies 
frames with excessive motion or global signal 
changes. Segmentation and normalization to 
the standard MNI space were performed, fol-
lowed by smoothing with an 8 mm Gaussian 
kernel to improve signal-to-noise ratio.
Denoising
Denoising eliminated confounding signals 

from white matter, cerebrospinal fluid (CSF), 

Figure 1: The treatment protocol involved low-frequency repetitive transcranial magnetic  
stimulation (LF-rTMS) for three weeks, while the control group received sham rTMS for the 
same duration. Functional Magnetic resonance imaging (fMRI) evaluations were conducted 
both initially and post-intervention.
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and motion by employing the anatomical  
component-based noise correction (aComp-
Cor) method. The frequencies of neural sig-
nals above 0.008 Hz were retained by apply-
ing a temporal band-pass filter.
Functional Connectivity Analysis
First-level Connectivity Analysis
At the first level, ROI-to-ROI connectivity 

during the task was estimated using weight-
ed least squares (WLS) technique, employed 
to capture both intra-hemispheric and inter-
hemispheric connections.

Second-level Connectivity Analysis
The second level analysis employed a 

General Linear Model (GLM) to assess differ-
ences in FC between the treatment and control 
groups following the intervention. The GLM 
design matrix included two groups (treatment 
and control) and two conditions (before and 
after intervention). 

Group participation was encoded as binary 
variables (1 for inclusion, 0 for exclusion), 
and the model accounted for each subject’s 
pre- and post-intervention conditions. A con-
trast vector of [1 -1] was used to investigate 
group-level differences after the intervention, 
with the treatment group, showing greater 
post-intervention connectivity changes than 
the control group. In the GLM framework, a 
voxel-wise t-test was commonly used to deter-
mine statistical significance. In the context of 
neuroimaging, the T-value is commonly inter-
preted as a two-sample test statistic. A higher 
absolute T-value indicates a more significant 
difference in FC between the two groups. 
The uncorrected P-value represents the like-
lihood of observing the test statistic under 
the null hypothesis. To account for multiple  

comparisons, the False Discovery Rate (FDR) 
correction was used, with p-FDR values less 
than 0.05 considered statistically significant.

Results
Ten participants were enrolled in the study, 

with six assigned to the treatment group (60%) 
and four to the control group (40%). One par-
ticipant did not complete the experiment. The 
demographic characteristics of the participants 
are summarized in Table 1.

First-level connectivity analysis
Figure 2 presents heatmaps of the FC dur-

ing passive affected knee movements for one 
participant from the control group and one 
from the treatment group. The heatmaps in-
dicate the range of FC values, with red and 
blue hues representing increased positive and 
negative connectivity, respectively. Notably, 
post-intervention, FC values in the treatment 
group were significantly higher than those in 
the control group.

Second-level Connectivity Analy-
sis

The second-level connectivity analysis  
identified specific reductions in FC in the 
treatment group compared to the control group 
following LF-rTMS. Two-sample t-tests were 
used for each pair of brain regions to assess 
these changes. The resulting T-values and un-
corrected P-values were adjusted using the 
FDR method, as shown in Table 2. The blue 
squares in Figure 3 represent statistically  
significant decreases in FC between treatment 
and control groups in specific brain regions, 
as determined by the second-level analysis.  

Group Participants (n=6) Age (mean±SD) Gender (Male/Female)
Treatment group 6 (60%) 9.2±2.93 3M/3F

Control group 4 (40%) 7.83±2.31 2M/2F

Table 1: Patient demographics
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Significant reductions in FC were found be-
tween the contralesional premotor ventral cor-
tex (cPMv) and the ipsilesional primary somato-
sensory cortex (iS1) (T=-2.60, p-FDR=0.048), 
as well as between the cPMv and the ipsile-
sional primary motor cortex (iM1) (T=-2.45,  
p-FDR=0.048). The ipsilesional supplemen-
tary motor area (iSMA) and ipsilesional sec-
ondary somatosensory cortex (iS2) showed 
the greatest decrease in FC (T=-3.11, p-
FDR=0.048). These findings suggest that LF-

rTMS has a specific effect on motor-sensory 
pathways, as evidenced by statistically sig-
nificant changes in connectivity confirmed by 
FDR correction. Figure 3 depicts a summary 
of these connections, with Table 2 providing 
additional information.

Percentage of Relative FC Chang-
es between Treatment and Control 
Groups Post-intervention

Figure 4 displays heatmaps with the  

Figure 2: Heatmaps representing functional connectivity (FC) in one participant from the con-
trol group (left) and one from the treatment group (right) during affected knee movement. Red 
hues indicate increased positive connectivity, while blue hues represent negative connectivity. 
Contralesional regions of interest (ROIs) include the primary somatosensory cortex (cS1), pri-
mary motor cortex (cM1), secondary somatosensory cortex (cS2), supplementary motor area 
(cSMA), ventral premotor cortex (cPMv), dorsal premotor cortex (cPMd), presupplementary 
motor area (cpreSMA), and cingulate cortex (cCC). Ipsilesional ROIs include iS1, iM1, iS2, iSMA, 
iPMv, iPMd, ipreSMA, and iCC.

ROI-to-ROI T-value p-uncorrected p-FDR
cPMv-iS1 -2.60 0.025 0.048
cPMv-iM1 -2.45 0.048 0.048
iSMA-iS2 -3.11 0.041 0.048

ROIs: Regions of Interest, FDR: False Discovery Rate, cPMv: contralesional Ventral Premotor Cortex, iS1: ipsilesional 
primary somatosensory cortex, iM1: ipsilesional primary motor cortex, iSMA: ipsilesional supplementary motor area, 
iS2: ipsilesional secondary somatosensory cortex

Table 2: Differences in brain functional connectivity (FC) between treatment and control groups 
after low-frequency repetitive transcranial magnetic stimulation (LF-rTMS) during affected knee 
movement.
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Figure 4: Heatmaps illustrate group mean functional connectivity (FC) changes in the control 
group (left) and the treatment group (right). Red hues indicate increased positive connectiv-
ity, while blue hues represent negative connectivity. Contralesional regions of interest (ROIs) 
include the primary somatosensory cortex (cS1), primary motor cortex (cM1), secondary so-
matosensory cortex (cS2), supplementary motor area (cSMA), ventral premotor cortex (cPMv), 
dorsal premotor cortex (cPMd), presupplementary motor area (cpreSMA), and cingulate cortex 
(cCC). Ipsilesional ROIs include iS1, iM1, iS2, iSMA, iPMv, iPMd, ipreSMA, and iCC.

Figure 3: Region-specific reductions in brain functional connectivity (FC) between treatment 
and control groups after low-frequency repetitive transcranial magnetic stimulation (LF-rTMS). 
The blue squares represent statistically significant reductions in functional connectivity (FC) be-
tween specific brain regions, as identified by the second-level analysis. Reductions were ob-
served between the contralesional premotor ventral cortex (cPMv) and the ipsilesional primary 
somatosensory (iS1) and motor (iM1) cortices, and between the ipsilesional supplementary 
motor area (iSMA) and secondary somatosensory cortex (iS2).
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percentage change in the group mean of FC 
changes for the treatment and control groups,  
comparing post-intervention results to pre-
intervention. After the intervention, the treat-
ment group exhibited more substantial increas-
es in FC, particularly in intra-hemispheric FC 
within both the contralesional and ipsilesional 
hemispheres. These changes were accompa-
nied by greater variability and a broader range 
of FC values in the treatment group compared 
to the control group.

Comparative Analysis of Rela-
tive Functional Connectivity (FC) 
Changes in Treatment and Control 
Groups Post-Intervention

Following the intervention, the treatment 
group demonstrated a significant relative in-
crease in FC in the contralesional hemisphere, 
with a mean change of 1032.23%, compared 
to a relative decrease of -43.47% in the con-
trol group. The standard deviation (SD) in the 
treatment group (1580.98%) was also much 
larger than that of the control group (200.86%), 
indicating greater variability in the treatment 
group. Similarly, the range of FC values was 
wider in the treatment group (3906.32%) com-
pared to the control group (699.72%).

In the ipsilesional hemisphere, intra-hemi-
spheric FC also showed significant differ-
ences. The treatment group had a mean FC 
of 136.30%, higher than the control group’s 
29.81%. Additionally, the treatment group 
displayed a higher SD (138.98%) compared 
to the control group (34.18%), as well as a 
wider range of FC values (338.39% versus 
114.24%).

For inter-hemispheric FC, the control group 
exhibited a higher mean FC (517.95%) than 
the treatment group (181.80%). However, 
the control group also showed greater vari-
ability, with an SD of 947.89%, compared to 
the treatment group’s SD of 207.51%. The 
control group also had a larger range of FC 
values (2605.36%) than the treatment group 
(694.22%).

Discussion
This study investigated the effects of LF-

rTMS on FC during passive movement of the 
affected knee in children with HCP. 

According to the finding, LF-rTMS has dis-
tinct effects on intra- and inter-hemisphere 
connectivity. Following the LF-rTMS inter-
vention, the treatment group’s intra-hemi-
sphere FC in the contralesional hemisphere 
was substantially higher than that of the con-
trol group. LF-rTMS may enhance neuroplas-
ticity and support the brain’s adaptive recon-
figuration during recovery by fostering neural 
connections in the unaffected hemisphere [35]. 

The control group, which did not receive 
stimulation, showed little to no improvement 
in FC and even a decrease in some areas, high-
lighting the significance of targeted interven-
tions in promoting neural recovery [36].

Significant interhemispheric FC differences 
were found between the control and treatment 
groups, consistent with previous research 
showing that active rTMS reduces interhemi-
spheric FC while sham increases it [37].

Based on the results, the control group ex-
hibited higher interhemispheric FC changes 
with considerable variability and a broad 
range, most likely reflecting unregulated in-
terhemispheric interactions under sham con-
ditions. These findings support the hypothesis 
that sham interventions may improve overall 
FC but lack the specificity to disrupt maladap-
tive transcallosal inhibition [38].

The treatment group had lower mean inter-
hemispheric FC changes, with less variability 
and a narrower range, indicating stabilized 
and intentionally modulated connectivity. 
Active interventions, such as rTMS, appear 
to enhance interhemispheric interactions by 
reducing maladaptive transcallosal inhibi-
tion, selectively facilitating the nondominant 
hemisphere, and improving functional out-
comes. These findings highlight the therapeu-
tic value of rTMS in regulating connectivity 
patterns and suggest strategies for improving 
interhemispheric modulation in clinical and 
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research settings.
Our findings indicate that LF-rTMS has dif-

ferent effects on FC between and within the 
hemispheres. It strengthens intra-hemispheric 
connections, especially those in the contral-
esional hemisphere while modulating inter-
hemispheric connections to reduce overactiv-
ity and restore balance. This dual effect makes 
LF-rTMS a promising treatment for HCP and 
other neurological disorders. Nonetheless, 
more research is needed to understand the un-
derlying mechanisms of LF-rTMS better and 
assess its long-term effects.

A key finding of the current study was that 
LF-rTMS significantly modulated FC between 
the contralesional ventral pre-motor area 
(cPMv) and ipsilesional motor and sensory re-
gions. The treatment group showed more sub-
stantial alterations in these connections than 
the control group. These adaptive changes 
are critical for motor recovery as they facili-
tate the integration of sensory feedback with 
motor planning, a process essential for coordi-
nated movement. This observation aligns with 
previous research highlighting the importance 
of pre-motor cortex reorganization in motor  
recovery following brain injury [39]. 

The reorganization of somatosensory and 
motor systems is crucial for individuals with 
motor impairments, such as cerebral palsy or 
stroke [40,41]. By targeting FC between the 
pre-motor cortex and sensory regions, LF-rT-
MS may activate compensatory mechanisms 
that enhance motor control and recovery 
[42,43]. This finding supports that effective 
rehabilitation interventions should address 
sensory and motor systems to maximize im-
provements in motor function [44]. 

The considerable variability observed in 
groups underscores the need for further re-
search to understand individual factors, such 
as baseline neurophysiological characteristics 
or the extent of brain injury, which may con-
tribute to differential responses to LF-rTMS.

Future studies should employ larger sam-
ple sizes to enhance the generalizability of  

findings. Additionally, investigations are need-
ed to elucidate the specific brain mechanisms 
underlying these alterations and evaluate the 
long-term effects of LF-rTMS in neuroreha-
bilitation. Furthermore, more extensive re-
search is required to optimize stimulation pa-
rameters, refine rehabilitation protocols, and 
explore the potential of machine learning in 
predicting individual recovery outcomes and 
tailoring treatment strategies [45-47].

Conclusion
This study shows that LF-rTMS modi-

fies functional connectivity in children with 
HCP, specifically between the contralesional 
pre-motor cortex and the ipsilesional mo-
tor and sensory regions. The treatment group 
demonstrated greater improvements in intra-
hemispheric connectivity in the contralesional 
hemisphere and a more dynamic neurophysi-
ological response. These findings suggest that 
LF-rTMS may facilitate neuroplasticity and 
promote brain reorganization.
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