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Introduction

Diabetes frequently leads to diabetic retinopathy (DR), a ma-
jor cause of vision loss, especially among those of working 
age. The disease progresses through several stages, beginning 

with mild non-proliferative abnormalities to more severe proliferative 

Original

ABSTRACT
Background: Diabetic retinopathy (DR), a diabetes complication, causes blindness 
by damaging retinal blood vessels. While deep learning has advanced DR diagnosis, 
many models face issues like inconsistent performance, limited datasets, and poor in-
terpretability, reducing their clinical utility. 
Objective: This research aimed to develop and evaluate a deep learning structure 
combining Convolutional Neural Networks (CNNs) and transformer architecture to 
improve the accuracy, reliability, and generalizability of DR detection and severity 
classification.
Material and Methods: This computational experimental study leverages 
CNNs to extract local features and transformers to capture long-range dependencies 
in retinal images. The model classifies five types of retinal images and assesses four 
levels of DR severity. The training was conducted on the augmented APTOS 2019 da-
taset, addressing class imbalance through data augmentation techniques. Performance 
metrics, including accuracy, Area Under the Curve (AUC), specificity, and sensitivity, 
were used for metric evaluation. The model’s robustness was further validated using 
the IDRiD dataset under diverse scenarios. 
Results: The model achieved a high accuracy of 94.28% on the APTOS 2019 da-
taset, demonstrating strong performance in both image classification and severity as-
sessment. Validation on the IDRiD dataset confirmed its generalizability, achieving 
a consistent accuracy of 95.23%. These results indicate the model’s effectiveness in 
accurately diagnosing and assessing DR severity across varied datasets.  
Conclusion: The proposed Artificial intelligence (AI)-powered diagnostic tool 
improves diabetic patient care by enabling early DR detection, preventing progres-
sion and reducing vision loss. The proposed AI-powered diagnostic tool offers high 
performance, reliability, and generalizability, providing significant value for clinical 
DR management.
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DR, characterized by abnormal blood vessel 
growth on the retina. Early identification and 
accurate assessment of DR severity are crucial 
for preventing irreversible vision loss. The 
DR detection has relied on the manual analy-
sis of fundus images by trained ophthalmolo-
gists, which can be time-consuming, subject 
to inter-observer variability, and impractical 
for large-scale screening [1-3]. The increasing 
global prevalence of diabetes highlights the 
critical need for automated and accurate tools 
for the early detection and severity assessment 
of DR [4].

Recent advancements in deep learning have 
significantly enhanced the field of medical 
scan analysis. Convolutional Neural Networks 
(CNNs) have shown remarkable capabilities 
in extracting hierarchical features from com-
plex image data, including retinal images [5]. 
CNNs excel at extracting local features, but 
often face challenges in capturing long-range 
dependencies within images, which are essen-
tial for a thorough assessment of diseases. To 
address this limitation, Transformer models, 
initially developed for natural language pro-
cessing (NLP), have been adapted for image 
analysis, offering the ability to model global 
contextual relationships across an image [6-8].

Despite these technological advancements, 
several challenges persist in the application 
of deep learning for DR severity categoriza-
tion. One significant issue is the requirement 
for large and annotated images to train these 
approaches effectively [9]. The availability of 
such datasets is often limited, leading to issues 
with model generalizability and performance, 
particularly in diverse clinical settings. More-
over, many existing models suffer from a lack 
of interpretability, which is a critical factor 
in gaining the trust of clinicians and ensur-
ing the models’ adoption in routine clinical 
practice [10]. Additionally, the computational 
complexity associated with deep learning ar-
chitectures, particularly those incorporating 
Transformers, can be a barrier to their imple-
mentation in resource-constrained environ-

ments [11].
The primary challenge in the automated cat-

egorization of DR severity lies in developing a 
model that can accurately assess the condition 
across its various stages, from mild to prolifer-
ative retinopathy, while addressing the limita-
tions of current methodologies. Many existing 
deep learning-based DR classification systems 
primarily rely on CNNs. While CNNs are ef-
fective at local feature extraction, they may 
not fully capture the complex relationships 
between various retinal regions that indicate 
disease progression [12]. Furthermore, the im-
balance in available datasets, where some se-
verity levels are underrepresented, poses a sig-
nificant hurdle, leading to biased models [13]. 
Another critical issue is the interpretability of 
these models. High accuracy alone is not suf-
ficient; the models must also provide insights 
that are actionable for clinicians [14]. Lastly, 
the computational demands of advanced deep 
learning models, particularly those incorporat-
ing transformer mechanisms, can restrict their 
usability in real-world clinical settings with 
limited resources [15].

Wang et al. [16] introduced a hierarchical 
multi-task deep learning model designed to si-
multaneously identify the severity of diabetic 
retinopathy and associated features in fundus 
images. This approach integrated causal rela-
tionships between DR features and severity 
levels, and its performance was assessed us-
ing two separate datasets. The performance 
evaluation of the proposed model in DR se-
verity classification was conducted using 
metrics, such as the weighted Cohen’s kappa 
coefficient, receiver operating characteristic 
(ROC) curves, and precision-recall analyses. 
The results showed that the model performed 
at a level comparable to ophthalmologists with 
5–10 years of experience in diagnosing DR se-
verity.

In the research conducted by Zhang et al. 
[17], a classification model based on the In-
ception V3 architecture was developed using 
the publicly available Kaggle dataset, which 
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includes over 88,000 fundus images. The 
model was evaluated using input images with 
two resolutions: 299×299 and 896×896 pixels. 
The model using 896×896 pixel input outper-
formed the one with lower resolution, achiev-
ing an Area Under the Curve (AUC) of 0.968, 
sensitivity of 0.925, and specificity of 0.907. 
This indicates that higher image resolution  
improves classification performance.

In the study by Kale and Sharma [18], an en-
semble deep-learning approach was presented 
for classifying the severity of DR into five lev-
els (proliferative, severe, moderate, mild, and 
no-DR). Initially, CNNs were trained and then 
combined to create an ensemble model, which 
was further fine-tuned. The ensemble model 
achieved a validation accuracy of 87.31%.

Mustafa et al. [19] introduced a multi-stream 
neural network for DR severity categorization. 
The method utilized pre-trained ResNet-121 
and DenseNet-50 architectures for feature 
extraction and applied principal component 
analysis (PCA) for dimensionality reduction. 
The approach was evaluated on the MES-
SIDOR-2 and EyePACS databases, achieving a  
classification accuracy of up to 95.58%.

In the research by Sikder et al. [20], an en-
semble learning method based on decision 
trees was employed to classify DR severity. 
Using features, such as gray-level intensity 
and texture from fundus images in the APTOS 
2019 database, the model obtained an accu-
racy of 94.20% and an F-measure of 93.51%.

Goel et al. [21] utilized transfer learning 
procedures to develop an architecture for  
classifying DR severity. The suggested meth-
od was trained on the IDRD dataset with 
high accuracy in grading retinal images into  
severity levels.

Bhardwaj et al. [22] introduced a quadrant-
based ensemble learning model using the In-
ceptionResNet-V2 framework for DR severity 
categorization. Techniques, such as histogram 
equalization, quadrant cropping, and data aug-
mentation were employed, resulting in an ac-
curacy of 93.33% and a 13.58% improvement 

compared to earlier methods. 
In the study by Fayyaz et al. [23], AlexNet 

and ResNet101 were utilized for feature ex-
traction, combined with a support vector ma-
chine (SVM) for DR severity classification. 
The proposed strategy obtained an accuracy 
of 93% in categorizing disease severity.

Sugeno et al. [24] introduced a simple ap-
proach for lesion identification and severity 
grading of DR using EfficientNet-B3 and the 
APTOS 2019 database. The architecture ob-
tained sensitivity and specificity values above 
0.98 and demonstrated excellent performance 
in severity classification.

Bodapati et al. [25] proposed an innovative 
composite deep neural network augmented 
with a gated-attention mechanism to clas-
sify the severity of diabetic retinopathy. By 
synergizing features extracted from multiple 
CNNs, their approach yielded an accuracy of 
82.54% and a kappa score of 79, underscoring 
its potential in DR severity prediction despite  
moderate performance.

In another study, Zhang et al. [26] intro-
duced a meticulously optimized deep-learning 
framework tailored for grading DR sever-
ity. Their method incorporated sophisticated 
techniques, including background segmenta-
tion, feature refinement through the Cuckoo 
search algorithm, and CNN-driven classifica-
tion. Validated against the MESSIDOR and 
IDRiD datasets, this framework demonstrated 
remarkable accuracies of 97.55% and 98.02%, 
respectively, highlighting its efficacy and ro-
bustness in handling complex retinal image 
datasets.

A plethora of studies have investigated the 
application of deep learning techniques for 
classifying the severity of diabetic retinopathy. 
Among these, notable contributions by Wang 
et al. [16] and Zhang et al. [17] predominantly 
employed CNN-based architectures, capital-
izing on their proficiency in extracting lo-
calized features from fundus images. These 
approaches underscore the widespread reli-
ance on CNNs to tackle fundamental image  
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analysis tasks in DR classification. While 
these approaches have achieved high accuracy 
in DR severity detection, their primary limi-
tation lies in their inability to analyze long-
range dependencies and global relationships 
within retinal images. Ensemble models, like 
those introduced by Kale and Sharma [18] and 
Bhardwaj et al. [22], have shown improved 
accuracy but have still faced challenges when 
dealing with imbalanced datasets, especially 
for underrepresented severity levels, such as 
severe and proliferative DR. Although re-
search, such as Sikder et al. [20] and Goel et 
al. [21] have incorporated data augmentation 
techniques, these efforts often fall short in 
enhancing model generalizability across real-
world datasets. Furthermore, a critical limita-
tion of existing methods is the lack of inter-
pretability in their outputs, making it difficult 
for clinicians to adopt these tools for practical 
applications.

This study aims to address existing limita-
tions by developing a hybrid deep-learning 
model that integrates the strengths of both 
CNNs and Transformers. The goal is to im-
prove the accuracy of DR severity classifica-
tion while enhancing model interpretability. 
The model employs CNNs to extract localized 
features, while transformers are leveraged to 
capture long-range dependencies and contex-
tual relationships within retinal images, creat-
ing a more holistic and robust analytical frame-
work. This integration is expected to improve 
the structure’s ability to assess the severity of 
DR more comprehensively [6]. Moreover, to 
mitigate the issue of class imbalance, the study 
employs data augmentation strategies, such as 
brightness adjustment, scaling, and rotation. 
These techniques help generate a more bal-
anced dataset, thereby improving the model’s 
generalization capabilities across all severity 
levels [27]. The study focuses on designing 
a model that not only achieves high accuracy 
in classifying DR severity but also provides 
interpretable results that clinicians can read-
ily use to make informed decisions [28]. The  

hybrid model’s efficacy will undergo a com-
prehensive evaluation utilizing key perfor-
mance metrics, including the area under the 
receiver operating characteristic curve (AUC-
ROC), specificity, sensitivity, and accuracy. 
These metrics are chosen to assess the model’s 
robustness and reliability, ensuring its suitabil-
ity for deployment in clinical environments 
[29,30].

This research introduces a hybrid deep learn-
ing framework that combines the precision of 
CNNs for capturing local features with the 
ability of Transformers to analyze global pat-
terns. This harmonious synergy elevates both 
the accuracy and interpretability of diabetic 
retinopathy severity classification, establish-
ing a new paradigm in the field. Unlike exist-
ing models [31-35] that predominantly rely 
on CNNs for local feature extraction, this ap-
proach leverages the power of transformers to 
capture long-range dependencies within reti-
nal images. This approach improves DR se-
verity assessment while overcoming conven-
tional model limitations. Data augmentation 
enhances generalization, ensuring robustness 
for clinical applications. This study introduces 
an innovative integration of CNNs and Trans-
former models, where CNNs extract localized 
features from fundus images while Transform-
ers capture broader contextual relationships. 
This synergy significantly enhances the mod-
el’s ability to accurately classify DR severity 
across all stages, from mild non-proliferative 
to severe proliferative forms, ensuring a more 
comprehensive and reliable assessment [36].

A major challenge in DR severity classifi-
cation is dataset imbalance, as certain sever-
ity levels are underrepresented. This research  
addresses this limitation by employing data 
augmentation techniques such as brightness 
adjustment, scaling, and rotation to create a 
more balanced dataset. These strategies im-
prove the model’s generalizability across all 
severity levels, ensuring consistent and un-
biased performance even in real-world clini-
cal settings. Beyond achieving high accuracy,  
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interpretability remains crucial for clinical 
adoption. This study emphasizes the develop-
ment of a model that not only delivers precise 
predictions but also generates interpretable 
outputs that clinicians can easily understand 
and apply. By providing actionable insights, 
this approach bridges the gap between  
AI-driven tools and practical clinical use,  
ultimately enhancing the quality of diabetic 
patient care [37,38].

This study aims to present a clear and struc-
tured analysis of the research process, focus-
ing on the development of a hybrid CNN-
Transformer model for diabetic retinopathy 
severity classification. It introduces novel pre-
processing techniques and data augmentation 
strategies to enhance model performance. The 
research highlights improvements in accura-
cy and robustness compared to conventional 
models, offering valuable insights into its clin-
ical applicability and future advancements.

Material and Methods
This computational experimental study 

implements retrospective data from public-
ly available datasets to develop and assess a 
hybrid deep learning model for classifying 
the severity of DR. The research leverages a 
unique, less-explored dataset, presenting spe-
cific challenges in data complexity. To address 
these, a hybrid deep learning model was de-
veloped, combining CNNs with transformer 
mechanisms to capture both global and local 

image features. The following subsections 
detail the dataset, preprocessing steps, model 
architecture, and techniques to enhance per-
formance and generalization.

Datasets 
The APTOS 2019 DR images are publicly 

available on the Kaggle website [39]. This da-
taset was selected because it originates from 
India, which has a population ethnically simi-
lar to that of Mauritius. Thus, each scan in the 
APTOS 2019 dataset was classified into one 
of five classes (0 to 4) based on the severity 
of the disease. Similarly, a local physician cat-
egorized each image from the local group into 
these same classes.

The original APTOS dataset consisted of 
3662 images, distributed across the five class-
es as shown in Table 1. However, a manual 
quality check excluded low-quality and noisy 
images, leaving 3057 high-quality images for 
further analysis. To address the significant 
imbalance in the class distribution, five data 
augmentation strategies were applied: hori-
zontal flipping (mirroring images horizontally 
to simulate different perspectives), vertical 
flipping (mirroring images vertically for addi-
tional diversity), brightness adjustment (modi-
fying image brightness to mimic varying light-
ing conditions), scaling (resizing images to 
simulate different zoom levels), and rotation 
(rotating images by small angles to introduce 
variability in orientation). These augmentation 

Class After Exclusion of Noisy Images Augmented Images Final Total
No DR (Class 0) 1300 6480 7780
Mild DR (Class 1) 359 1796 2155

Moderate DR (Class 2) 926 4630 5556
Severe DR (Class 3) 186 930 1116

Proliferative DR (Class 4) 286 1430 1716
Total 3057 15266 18310

DR: Diabetic Retinopathy

Table 1: Class-wise image distribution before and after preprocessing, including noise removal 
and augmentation.

141



J Biomed Phys Eng 2025; 15(2)

Khosro Rezaee, et al

techniques expanded the dataset to 18310 im-
ages while ensuring a balanced representation 
across all classes.

The final dataset includes images from all 
severity levels, categorized into five class-
es, to analyze a range of retinal conditions.  
Table 1 summarizes the dataset distribution 
before and after augmentation, highlighting 
the preprocessing steps applied. This study 
analyzes a range of retinal conditions using 
fundus images categorized into five severity 
classes.

Image preprocessing
The images are in Red-Green-Blue (RGB) 

format, as CNN-based networks like ResNet 
typically accept RGB pictures as input, utiliz-
ing three channels to capture blue, green, and 
red. If a retinal image generated in any modal-
ity was grayscale with only one channel, we 
replicated that layer to achieve an RGB for-
mat, allowing it to be processed directly by the 
CNN. Two various preprocessing frameworks 
were tested to convert the fundus pictures 
into a suitable input format for the CNN, en-
abling full utilization of pre-trained networks. 
In summary, the retinal scans were resized to 
224×224 pixels and then converted to RGB 
format. The techniques used include rotation, 
scaling, random cropping, brightness adjust-
ment, and noise application. These methods 
increase the diversity of the training data, al-
lowing models to focus on significant features 
in the images and avoid reliance on specific, 
non-essential characteristics.

CNN-Transformer Fusion
The input consists of fundus retinal scans to 

detect signs of DR. These images are typically 
depicted as 3D matrices H×W×C, where C is 
the number of color channels, W is the width, 
and H is the height. Before feeding these im-
ages into the model, preprocessing steps such 
as normalization or resizing might be applied. 

ResNet18 extracts hierarchical features us-
ing convolutional layers and residual blocks, 

ensuring efficient gradient flow. Key parame-
ters include the number of filters (feature map 
depth), kernel size (e.g., 3×3), stride (filter 
movement), and padding (spatial preserva-
tion).

In the Region of Interest Alignment (ROI 
Align) and Bounding Box functions, these 
techniques are used to focus on specific re-
gions of the retina that are more likely to 
exhibit signs of DR, such as areas with mi-
croaneurysms or hemorrhages. ROI Align is 
typically implemented using bilinear interpo-
lation to align the extracted features with the 
region of interest. The bounding box focuses 
on retinal regions with potential DR signs, 
such as microaneurysms and hemorrhages, 
while ROI Align ensures accurate resampling 
and alignment for further analysis. The extrac-
tion of ROIs and bounding boxes was per-
formed using a lesion detection approach that 
identifies areas in the retinal images with high 
likelihoods of abnormalities, such as microan-
eurysms, hemorrhages, or exudates. Specifi-
cally, intensity thresholding and morphologi-
cal operations were utilized to preprocess the 
images and highlight potential lesions. This 
was followed by connected component anal-
ysis to segment the highlighted regions and  
determine the bounding boxes.

The extracted ROIs and bounding boxes 
were fed into the CNN architecture as addi-
tional inputs to refine the feature extraction 
process. These regions were aligned using 
ROI pooling (or ROI Align) to ensure compat-
ibility with the CNN input size and to retain 
spatial information. The ROI-aligned features 
were seamlessly integrated with those derived 
from the ResNet18 backbone, enabling the 
model to combine global context from the en-
tire image with precise localized information 
from the identified lesions. This combined ap-
proach enhances the method’s capability to 
capture both the overall structure of the retina 
and localized lesion-specific features, leading 
to improved performance in severity classifi-
cation. In the Fully Connected Layer (FC), the 
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operation can be represented as:

y Wx b= +                   (1)
Where y is the output vector representing 

class scores, W is the weight matrix, x is the 
input feature vector from the previous layer, 
and b is the bias term. The number of neurons 
determines the output dimensionality, usually 
matching the number of classes or labels (in 
this case, the severity levels of DR). The trans-
former encoder analyzes the feature vectors to 
identify long-range dependencies and contex-
tual relationships within the retinal image fea-
tures. Originally designed for sequential data 
processing, it is adapted here to enhance the 
understanding of spatial relationships in im-
age data. The self-attention mechanism is ex-
pressed as:

( ), ,
T

mech
k

QKAttention Q K V softmax
d

 
=   

 
 (2)

Where Q is the query matrix, derived from 
the input features, K is the key matrix, also de-
rived from the input features, V is the value 
matrix, representing the same input features, 
and dk is the dimensionality of the key vec-
tors used for scaling. The positional encoding 
is expressed as:
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           (4)

Where pos is the position of the element in 
the sequence, i is the dimension index, and 
dmodel is the total dimension of the model. The 
parameters here contain the number of layers, 
which controls the depth of the transformer 
encoder, and the number of heads, which de-
termines how many self-attention mechanisms 
are run in parallel (multi-head attention). The 
final fully connected (FC) layer takes the 
pooled features and generates the prediction, 
indicating the severity of DR. This layer pro-
vides the output probabilities or class labels 
based on the processed features. The number 
of output classes corresponds to the number 
of severity levels the model predicts, which 
could range from no diabetic retinopathy to 
proliferative DR. This model architecture is 
designed to leverage convolutional layers for 
localized feature extraction and transformer 
encoders for capturing global dependencies, 
resulting in a robust system for detecting and 
grading DR from retinal images. A feature 
vector is initially extracted from the input im-
age using the first two layers of a ResNet-18 
model, followed by ROI-Align, as illustrated 
in Figure 1. These features are then processed 
by a sequence classification network to iden-
tify the tumor subtype. A fully-connected net-
work layer is employed for final classification.

ResNet18 was selected as the backbone ar-
chitecture due to its well-documented ability 

Figure 1: Depiction of the two-stage single-modal approach. (ROI Align: Region of Interest  
Alignment)
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to effectively extract hierarchical features from 
complex datasets, including medical images. 
Its residual connections mitigate the vanishing 
gradient problem, facilitating the convergence 
of deeper networks during training. This ca-
pability is particularly advantageous when 
working with high-resolution fundus images, 
as it supports efficient feature extraction while 
maintaining computational feasibility.

Ablation studies were conducted to evalu-
ate the impact of the backbone architecture on 
overall model performance. When ResNet18 
was replaced with alternative architectures, 
the accuracy of DR severity classification 
dropped by an average of 2–5%, alongside 
longer training times and increased memory 
requirements. These findings underscore the 
robustness and suitability of ResNet18 for this 
task. Furthermore, its strong performance in 
hierarchical feature extraction, coupled with 
computational efficiency, makes it ideal for 
large-scale datasets, offering an optimal bal-
ance between accuracy and resource utiliza-
tion compared to other alternatives.

To ensure clarity and reproducibility, a sys-
tematic approach was employed to extract 
ROIs and generate bounding boxes for isolat-
ing areas indicative of diabetic retinopathy, 
such as microaneurysms, hemorrhages, and 
exudates. Initially, the raw retinal images un-
derwent preprocessing to enhance quality and 
highlight critical features. Gaussian filtering 
with a 3×3 kernel was applied to reduce noise 
while preserving edge details, followed by 
histogram equalization to improve contrast. 
Potential lesion regions were identified using 
intensity thresholding with a normalized val-
ue of 0.7, effectively isolating brighter areas  
associated with abnormalities.

To refine these segmented regions, mor-
phological operations, including dilation and 
erosion, were applied to close small gaps 
and remove noise, resulting in cleaner lesion 
boundaries. Connected component analy-
sis was then used to identify distinct clusters 
of pixels within these regions, which were 

treated as individual lesions. Bounding boxes 
were generated by calculating the minimum 
and maximum coordinates of each cluster and 
slightly scaling them to include surrounding 
contextual information. This ensured that each 
bounding box encompassed not only the le-
sion but also adjacent areas containing subtle 
diagnostic cues.

The bounding boxes were aligned using ROI 
Align with bilinear interpolation to ensure 
compatibility with the input size required by 
the CNN while preserving spatial information. 
These aligned ROI features were resampled to 
a uniform size of 7×7 and seamlessly integrat-
ed with the global features extracted by the 
ResNet18 backbone. By concatenating these 
localized and global features, the model ef-
fectively combined lesion-specific details with 
broader contextual cues. This dual approach 
enabled superior performance in DR severity 
classification, ensuring robust and accurate 
detection of critical retinal abnormalities. 

Model setting
In this study, a sequence categorizing struc-

ture based on the transformer mechanism was 
designed. This approach used the transfer 
learning image classification architecture to 
extract microaneurysms, hemorrhages, hard 
exudates, neovascularization, and macular 
edema features from the input images, and the 
encoder architecture in the transformer mech-
anism was employed to derive self-attention 
features. Moreover, the number of heads and 
encoder layers was adjusted through a cross-
validation strategy. A self-attention feature, 
incorporating sequence details, was created by 
the encoder layer. These features were max-
pooled across the sequence dimensions to 
obtain the diabetes-related features and their 
severity across the original images. In the final 
step, logits were computed identically to the 
image classification model. The image clas-
sification model’s weights remained constant 
during training, while the sequence classifica-
tion model was adjusted using the Adaptive 
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Moment Estimation (ADAM) optimizer with 
a starting learning rate of 1e-5. Additionally, to 
prevent overfitting, a dropout operation with a 
probability of P-value=0.5 was employed to 
the FC layer. 

Initially, an image classification network 
for retinal images was designed based on 
ResNet-18 (Figure 2). The core components 
of the ResNet-18 model were initialized using 
pre-existing weights derived from the Ima-
geNet database. This approach was necessary 
as the available dataset was inadequate for 
training a deep learning model from scratch.

ResNet18 was selected as the backbone due 
to its ability to extract hierarchical features ef-
ficiently from high-resolution medical images, 
leveraging residual connections to overcome 
the vanishing gradient challenge. A compara-
tive evaluation against architectures, such as 
VGG16, MobileNetV2, and DenseNet121 re-
vealed that ResNet18 strikes an optimal bal-
ance between accuracy and computational ef-
ficiency. This makes it particularly well-suited 
for resource-limited settings, even though it 
delivers marginally lower accuracy than some 
of the deeper models. The model incorpo-
rated the initial two layers of the ResNet-18 
architecture and the ROI-Align technique to 
derive characteristics from both retinal im-
ages and the precise lesion boundaries. Classi-
fication outputs (logits) were computed using 
the retinal features through a fully connected 
network, with predictions using the SoftMax 
model. The discrepancy between the method’s 

prediction and the true classification was com-
puted using the cross-entropy function during 
training. The ADAM optimizer was employed 
to minimize this difference, commencing with 
a learning rate of 1e-4. To prevent overfit-
ting, a dropout operation with a probability of  
P-value=0.5 was applied to the FC layer. The 
image categorizing architecture produced  
vectors demonstrating the DR features.

Results

Experimental setting
A multimodal approach, centered around a 

sequence classification model trained on com-
parable data augmentation techniques, was 
investigated to assess the potential benefits of 
combining data from various sources. Specifi-
cally, the integration operations were imple-
mented within a deep learning structure called 
PyTorch. Two primary integration methods 
were examined: early fusion and late fusion. In 
the early fusion approach, data from different 
sources were combined during the initial data 
preparation phase based on RGB channels and 
subsequently fed into the CNN. Conversely, 
the late fusion method involved employing 
multiple CNN branches to extract features  
independently from each modality’s data.

A five-fold cross-validation process was 
applied to optimize model hyperparameters. 
The training dataset was divided into five 
equal subsets through stratified random sam-
pling. Additionally, the leave-one-out cross- 

Diabetic Retinopathy Severity Classification

Figure 2: The architecture of the ResNet-18 model for image categorization of fundus images.

145



J Biomed Phys Eng 2025; 15(2)

validation (LOOCV) method was applied 
in the comparative analysis to further assess 
model performance and feature relevance. To 
comprehensively assess the proposed model’s 
efficiency, metrics such as specificity, sensitiv-
ity, area under the ROC curve, and accuracy 
were calculated. Additionally, a specialist with 
over 20 years of experience in diabetes diag-
nosis, expertise in ophthalmic image analysis, 
and more than 10 years of experience in di-
agnosing diabetes from other major eye dis-
eases, analyzed and scored all cases in the 
test set. The expert’s diagnoses were reliant 
on the identical deep learning dataset, devoid 
of supplementary patient clinical data. They 
identified abnormalities linked to diabetes on-
set and severity, serving as a benchmark for 

assessing the method’s accuracy. Finally, the 
severity of the disease in the retinal fundus im-
ages was assessed using a five-point scoring 
system, where class 1 indicated no DR, class 
2 for mild DR, class 3 for moderate DR, class 
4 for severe DR, and class 5 for advanced DR.

Evaluations
Table 2 presents the results of three experi-

mental scenarios evaluating the proposed ar-
chitecture’s performance for categorizing the 
severity of DR. These scenarios are as fol-
lows: EXP 1: The baseline experiment using 
the original dataset with standard preprocess-
ing and no additional data augmentation be-
yond the basic setup. EXP 2: Incorporation 
of enhanced data augmentation techniques,  

Khosro Rezaee, et al

No. Experiment Class
Accuracy 

(%)
Sensitivity 

(%)
Specificity 

(%)
F-Score 

(%)
Kappa 

(%)

Baseline (EXP 1)

No DR (Class 1) 94.08 90.96 96.25 92.42 89.57
Mild (Class 2) 91.51 88.95 93.55 90.20 87.21

Moderate (Class 3) 93.29 90.41 94.96 91.51 88.78
Severe (Class 4) 94.10 91.80 95.24 92.59 89.13

Proliferative DR (Class 5) 95.70 92.79 97.10 93.52 90.37
Mean 93.76 90.98 95.82 92.45 88.61

Enhanced  
Augmentation 

(EXP 2)

No DR (Class 1) 94.39 91.13 96.15 92.77 89.71
Mild (Class 2) 92.17 89.24 93.68 90.63 87.55

Moderate (Class 3) 93.96 90.59 95.11 91.82 88.96
Severe (Class 4) 94.48 92.02 95.60 92.93 89.70

Proliferative DR (Class 5) 96.23 93.10 97.61 94.12 90.84
Mean 94.24 91.00 95.83 92.45 88.94

Fine-Tuning  
(EXP 3)

No DR (Class 1) 94.51 91.06 96.33 92.58 89.39
Mild (Class 2) 92.16 90.18 93.94 91.05 88.12

Moderate (Class 3) 93.53 90.51 95.31 91.96 88.81
Severe (Class 4) 94.56 91.62 95.95 92.97 89.89

Proliferative DR (Class 5) 96.23 93.20 97.94 94.38 90.88
Mean 94.19 90.96 95.87 92.48 88.82

Overall 5 Classes 94.06 90.98 95.84 92.44 88.79
DR: Diabetic Retinopathy; F-Score: The harmonic means of precision and recall; Kappa: Cohen’s Kappa statistic, measuring 
agreement beyond chance

Table 2: Performance metrics for Diabetic Retinopathy (DR) severity classification across three 
experimental scenarios.
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including rotation and brightness adjustment, 
to improve model generalizability. EXP 3: 
Fine-tuned hyperparameters with the en-
hanced dataset, optimizing learning rates and 
batch sizes to achieve the best balance of ac-
curacy and efficiency. These experiments were 
designed to progressively refine the method’s 
efficiency, as detailed in Table 2. The method 
was tested across five classes ranging from 
“No DR” to “Proliferative DR.” The metrics 
evaluated include accuracy, sensitivity, speci-
ficity, F-Score, and Kappa, with the means cal-
culated across all classes in each experiment.

In the first experiment, the method obtained 
an overall accuracy of 93.76%, with a sensitiv-
ity of 90.98% and a specificity of 95.82%. The 
“Proliferative DR” class exhibited the highest 
accuracy at 95.70%, reflecting the method’s 
strength in identifying severe cases. The Kap-
pa statistic, a measure of agreement, averaged 
at 88.61%, indicating substantial agreement 
between the method’s predictions and the 
actual class labels. This experiment demon-
strates the model’s capability to balance high 
specificity and sensitivity, crucial for correctly 
identifying both diseased and healthy cases.

The second experiment produced slightly 
higher results, with an overall accuracy of 
93.89%, a sensitivity of 91.00%, and a speci-
ficity of 95.83%. The method’s performance 

remained consistent across classes, with the 
“Proliferative DR” class again, showing strong 
results with an accuracy of 95.97%. This indi-
cates the model’s robustness in detecting ad-
vanced stages of DR. The F-Score remained 
high at 92.45%, confirming the method’s ef-
fectiveness with a good balance between false 
negatives and false positives.

The third experiment yielded the highest 
overall accuracy of 94.06%, with a sensitiv-
ity of 90.96% and the highest specificity of 
95.87% among the three trials. The “Prolif-
erative DR” class consistently showed the 
best outcomes, with an accuracy of 96.23%. 
The Kappa value averaged 88.82%, indicating 
substantial agreement. The consistency across 
these three experiments demonstrates the re-
liability of the proposed method, with only 
minor fluctuations in performance metrics, 
which is typical in repeated trials due to inher-
ent variability in the dataset.

Finally, the mean accuracy across all experi-
ments and classes was 94.06%, with sensitiv-
ity and specificity averages of 90.98% and 
95.84%, respectively. Moreover, the F-Score 
averaged 92.44%, indicating that the method 
retained a robust balance between recall and 
precision across different severity levels of 
DR. The Kappa statistic averaged at 88.79%, 
further confirming the method’s robustness 

Model Type
Accuracy 

(%)
Sensitivity 

(%)
Specificity 

(%)
F-Score 

(%)
Kappa 

(%)
AUC

CNN + LSTM (Model 1) 91.81 89.53 94.22 90.77 87.84 0.9251
CNN + Capsule Network (Model 2) 92.22 89.84 94.56 91.18 88.01 0.9303

CNN + Autoencoder (Model 3) 91.51 89.85 94.73 90.52 87.58 0.9335
CNN + Attention Mechanism (Model 4) 92.40 89.90 94.55 91.05 88.05 0.9376

CNN + GAN (Model 5) 92.32 89.85 94.45 91.28 88.16 0.9427
Proposed Method (CNN + Transformer) 94.16 91.03 95.84 92.44 88.79 0.9638

CNN: Convolutional Neural Network; LSTM: Long Short-Term Memory; GAN: Generative Adversarial Network; AUC: Area 
Under the Curve; F-Score: The harmonic mean of precision and recall; Kappa: Cohen’s Kappa statistic, measuring agreement 
beyond chance 

Table 3: Comparative analysis of the suggested Convolutional Neural Network (CNN)-Trans-
former model with alternative deep learning architectures for Diabetic Retinopathy (DR)  
severity classification.
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and reliability in real-world applications.
In addition, Table 3 serves as a compre-

hensive comparison between the proposed 
framework and other potential deep learning 
approaches that could be employed for the 
same task. Table 3 highlights the strengths 
of the CNN-transformer model, particularly 
its superior accuracy, sensitivity, specificity, 
F-Score, and Kappa values, when compared 
to other models. This comparative analysis 
underscores the robustness and reliability of 
the proposed architecture, making it a strong 
candidate for clinical applications in DR di-
agnosis. The slight variations among the mod-
els emphasize the importance of selecting the 
right architecture based on specific diagnostic 
needs and computational resources.

The proposed CNN-transformer model dem-
onstrates a slightly higher accuracy (94.16%) 
compared to other models, such as the CNN 
+ Capsule Network and CNN + attention 
mechanism, indicating its robustness in cor-
rectly classifying the severity of DR across 
various levels. This model excels in main-
taining a strong balance between sensitivity 
and specificity, ensuring accurate identifica-
tion of both true negatives and true positives. 
The slight advantage in specificity (95.85%) 
over similar models highlights its precision in 
avoiding false positives, contributing to more 
reliable overall performance. Additionally, the 
proposed method’s higher F-Score and Kappa 
values indicate a better balance between recall 
and precision, and a stronger agreement be-
yond chance, making it particularly effective 
in distinguishing between different severity 
levels.

The strengths of the proposed method lie 
in its high performance across key metrics, 
which is crucial for the complex task of DR 
severity classification. By maintaining a bal-
anced detection rate, the method effectively 
reduces the likelihood of both false positives 
and false negatives, a critical factor in medi-
cal diagnostics. Moreover, the integration of 
CNNs with transformers allows the structure 

to capture both global and local features, en-
hancing its adaptability and robustness across 
various data variations and severity levels. 
This versatility makes the proposed model a 
strong candidate for clinical applications in 
DR diagnosis, where accuracy and reliability 
are paramount.

The AUC is a crucial metric for assessing 
the efficiency of classification models, par-
ticularly in imbalanced datasets. It quantifies 
the method’s capability to differentiate be-
tween classes, with higher AUC values indi-
cating better discrimination. In this study, the 
proposed CNN + transformer model achieved 
an AUC of 0.9638, the highest among all  
compared models. 

This high AUC reflects the method’s robust-
ness in correctly classifying both positive and 
negative samples of DR across various sever-
ity levels. The increasing AUC values, from 
0.9251 (CNN + LSTM) to 0.9427 (CNN + 
GAN), highlight the proposed model’s supe-
rior balance between sensitivity and specific-
ity for accurate classification.

Figure 3(a) to (e) show the confusion matri-
ces for Models 1 through 5, compared to the 
proposed framework shown in Figure 3(f), 
for DR severity categorization. Each of these 
models was randomly evaluated in a fold of 
different trials. However, due to the minimal 
variability in the results, the comparison is 
fair. In other words, the displayed folds rep-
resent only one instance among multiple test 
repetitions conducted during the evaluation 
process. Based on extensive experiments, the 
suggested approach achieved an accuracy of 
94.28%, along with a sensitivity of 90.98%, 
specificity of 95.84%, F-Score of 92.44%, 
and an AUC of 0.9640, outperforming CNN 
+ LSTM and CNN + GAN models in per-
formance. Moreover, the proposed model 
demonstrated superior accuracy in detecting 
various stages of DR, particularly excelling 
in identifying severe cases. These results un-
derscore the effectiveness of integrating CNN 
and transformer architectures as an innovative 
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and robust approach, significantly enhancing 
the framework’s capability to detect and cat-
egorize DR. This makes the presented method 
a highly reliable and precise tool for medical 
applications.

The ROC curves for both the validation 
(see Figure 4(a)) and test (see Figure 4(b)) 

data demonstrate the superior effectiveness of 
the proposed model (CNN + Transformer) in 
relation to similar approaches for DR sever-
ity classification. In both instances, the ROC 
curve of the proposed model aligns most 
closely with the top-left corner, reflecting its 
superior true positive rate (sensitivity) and 

Figure 4: ROC curves for models 1 to 5 compared with the proposed model (CNN + Transformer) 
in classifying DR severity. Panel (a) represents the ROC curve for validation data, while panel 
(b) shows the (ROC: Receiver Operating Characteristic Curve; AUC: Area Under the Curve; FPR: 
False positive rate; TPR: True positive rate) 

Figure 3: Confusion matrices for models 1 to 5 in comparison with the proposed method (CNN 
+ Transformer) in classifying DR severity. Panels a to f represent confusion matrices randomly 
selected from the folds for each method. The outcomes reflect the efficiency of the models 
across various test data scenarios. In panel f, the suggested framework demonstrates superior 
accuracy and efficiency compared to the other models.
(CNN: Convolutional Neural Network; LSTM: Long Short-Term Memory; GAN: Generative  
Adversarial Network)
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reduced false positive rate (1 - specificity), 
culminating in the highest AUC value. This 
reflects the framework’s distinguished capa-
bility to accurately distinguish between the 
negative and positive classes, optimizing its 
sensitivity and specificity across different data 
scenarios. In contrast, other models, such as 
CNN+LSTM, CNN+ Capsule network, show 
lower AUC values and their ROC curves are 
further from the top-left corner, signifying 
relatively weaker performance in classifying 
DR. Particularly on the test data, the presented 
structure not only obtains a higher AUC but 
also shows an improved ability to identify 
various stages of the disease, especially in 
detecting more severe cases. These outcomes 
underscore the robustness and effectiveness of 
the CNN + transformer method, demonstrat-
ing that it outperforms alternative methods 
both in validation and in real-world test sce-

narios. This consistent superior performance  
highlights its potential as a reliable and  
accurate tool for DR detection, making it a 
valuable asset in medical diagnostics.

Generalizability Analysis
The analysis of various models for detect-

ing the severity of DR from retinal pictures 
reveals critical insights into their performance 
under different conditions. The results under-
score the importance of selecting models that 
not only excel in accuracy and AUC but also 
demonstrate robustness and adaptability when 
faced with real-world challenges, such as data 
augmentation, stringent validation techniques, 
and noisy datasets. These findings suggest that 
while certain models, like the proposed meth-
od and Model 5, consistently perform well 
across diverse scenarios, others may require 
further refinement to improve their resilience 

Figure 5: Performance comparison of models under three scenarios: (a) Impact of data  
augmentation, showing significant improvements in the proposed method and Model 6; 
(b) LOOCV, highlighting the robustness of the proposed method compared to declines in 
Model 3 and Model 4; and (c) resilience to noise, where the proposed method and Model 
5 maintain strong performance while others show notable drops (DR: Diabetic Retinopathy,  
AUC: Area Under the Curve, LOOCV: Leave-One-Out Cross-Validation).
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and generalizability. This section analyzes 
the results, emphasizing their significance 
in DR severity categorization, highlighting 
model strengths, and identifying areas for  
improvement. 

Figure 5 presents a comprehensive compari-
son of the methods’ performance under vari-
ous challenging conditions, with baseline ac-
curacy and AUC metrics to enhance clarity. 
The evaluation of various models for detect-
ing DR severity under different scenarios pro-
vides critical insights into their performance,  
adaptability, and robustness.

Figure 5(a): Data augmentation is a widely 
used technique to improve the generalizability 
of machine learning models by increasing the 
diversity of training datasets. In this scenario, 
baseline metrics illustrate the performance of 
each model before applying data augmenta-
tion. The results show significant improve-
ments in both accuracy and AUC for most 
models after augmentation. This technique 
enhances generalizability by expanding the 
training dataset with diverse variations, such 
as rotation, brightness adjustment, and flip-
ping. Model 6 and the proposed method show 
the most significant improvements, highlight-
ing their superior adaptability to larger and 
more diverse datasets.

Figure 5(b): LOOCV is a rigorous valida-
tion strategy that often results in slight reduc-
tions in accuracy due to the minimal training 
data available per fold. This evaluation meth-
od tests the stability of models under extreme 
sampling conditions. The proposed method 
maintains stable performance close to its base-
line metrics, indicating its robustness under 
stringent sampling. In contrast, models such 
as Model 3 and Model 4 show considerable 
declines in accuracy and AUC, potentially due 
to their reliance on larger training datasets or 
less effective feature extraction mechanisms.

Figure 5(c): In real-world scenarios, data is 
often noisy or variable in quality. Figure 5(c) 
explores the impact of noisy data on model 
performance, with baseline metrics from clean 

data included for comparison. The proposed 
method and Model 5 demonstrate strong  
resilience, maintaining high accuracy and 
AUC despite the introduction of noise. In con-
trast, other models, including Model 1 and 
Model 2, experience significant drops in per-
formance, highlighting their vulnerability to 
variability in data quality. 

Therefore, these results underscore the 
adaptability and reliability of the proposed 
method across diverse scenarios, making it a 
promising candidate for practical deployment 
in DR severity classification. The inclusion of 
baseline metrics ensures a clear understand-
ing of the improvements achieved, while the 
comparisons highlight the specific strengths 
and limitations of each model under varying 
conditions. These findings emphasize the im-
portance of developing robust and adaptable 
models for deployment in clinical environ-
ments where variability in data and stringent 
conditions are common challenges.

The proposed method demonstrates strong 
generalization capabilities across different 
conditions, making it highly adaptable to vari-
ous real-world scenarios. Its ability to main-
tain consistent performance, even when sub-
jected to challenging conditions such as data 
augmentation, rigorous cross-validation, and 
noisy datasets, highlights its robustness. This 
generalization is largely attributed to the in-
tegration of advanced techniques that allow 
the model to effectively capture and learn 
from both local and global features within the 
retinal images. Consequently, the proposed 
method demonstrates excellence in standard 
evaluation metrics while maintaining robust-
ness against data variability, establishing itself 
as a dependable solution for precise diabetic 
retinopathy severity categorization across  
diverse clinical environments.

The Indian DR Image Dataset (IDRiD) is 
a comprehensive and high-resolution dataset 
specifically designed to represent the Indian 
population, offering retinal fundus images 
with pixel-level annotations. Collected by ex-
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perts in a clinical setting in Nanded, Maharash-
tra, India, the database consists of 516 images 
meticulously labeled for common DR lesions, 
such as hard exudates, hemorrhages, microan-
eurysms, and soft exudates, along with natural 
retinal structures like the optic disc. Addition-
ally, IDRiD offers detailed annotations on the 
severity of diabetic retinopathy and diabetic 
macular edema for each image, making it an 
essential resource for the development and 
validation of image analysis algorithms aimed 
at the early detection and diagnosis of DR. 
The IDRiD dataset contains 516 retinal im-
ages categorized into five classes based on DR 
(DR) severity: No DR (134 images), mild DR 
(74 images), moderate DR (160 images), se-
vere DR (106 images), and proliferative DR 
(42 images). The class distribution is imbal-
anced, with the highest number of samples 
in Class 2 (moderate DR) and the lowest in 
Class 4 (proliferative DR). This distribution 
is crucial for designing and evaluating deep  
learning algorithms.

Due to its similarity to our primary data-
set in terms of image resolution, annotations, 
and diversity of classes, we utilized IDRiD to 
analyze the generalizability and robustness of 
our proposed structure. This was particularly 
important to ensure the model’s applicability 
across diverse datasets and populations. For 
the 5-class DR severity categorization task, 
the suggested model obtained a notable accu-

racy of 95.87%, demonstrating its high effica-
cy in discerning various stages of the disease.  
Table 4 presents key performance metrics, 
including F-score, specificity, and sensitiv-
ity. The AUC was also evaluated, confirming 
the model’s reliability and adaptability. This 
validation on IDRiD underscores the model’s 
potential as a robust diagnostic tool for DR 
across diverse clinical settings.

Comparative Analysis
Table 5 presents a comprehensive compara-

tive analysis of different DR detection meth-
ods, highlighting their respective strengths 
and limitations across critical evaluation cri-
teria, including accuracy, computational ef-
ficiency, and real-world applicability. Among 
these methods, Ergun and Ilhan [13] achieve 
the highest reported accuracy of 95.55%, le-
veraging ensemble techniques combining 
VGG and EfficientNet models. However, the 
method comes with high computational com-
plexity, making it less suitable for real-time 
applications. Despite its impressive diagnos-
tic performance, the lack of detailed informa-
tion regarding augmentation strategies, gen-
eralizability to unseen datasets, and handling 
of noisy or imbalanced data poses significant 
concerns about its applicability in diverse 
clinical scenarios. Similarly, methods like  
Sikder et al. [20], with an accuracy of 94.20%, 
and Fayyaz et al. [23], at 93%, excel in spe-

Class Accuracy (%) Sensitivity (%) Specificity (%) F-Score (%) AUC
No DR 99.83 96.30 99.93 98.08 98.12
Mild DR 92.69 91.86 95.63 93.71 93.74

Moderate DR 98.56 95.12 99.09 97.06 97.10
Severe DR 98.16 96.28 99.26 97.75 97.77

Proliferative DR 90.13 89.72 94.39 92.00 92.06
Mean 95.87 93.86 97.66 95.72 95.76

DR: Diabetic Retinopathy; AUC: Area Under the Curve; F-Score: The harmonic mean of precision and recall 

Table 4: This table summarizes the performance metrics of the model evaluated on the  
IDRiD dataset, highlighting its superior accuracy and robust generalizability in assessing diabetic 
retinopathy severity.
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cific tasks, such as feature selection or texture 
analysis. However, they do not address critical 
challenges, such as robust handling of noisy 
images or ensuring consistency across predic-
tions, which are crucial for clinical reliability.

The proposed method, combining CNN and 
transformer architectures, achieves a competi-
tive accuracy of 94.28% while maintaining a 
medium level of computational complexity. 
This balance makes it more practical for re-
al-world applications, especially in resource-
constrained environments. Unlike other high-
performing methods, the proposed approach 
explicitly tackles the issue of imbalanced 
datasets through effective augmentation tech-
niques, enhancing its generalizability and ro-
bustness. Furthermore, its dual focus on local 
and global feature extraction enables better 
interpretation of noisy or low-quality images, 
a common occurrence in real clinical settings. 
While methods like Ergun and Ilhan [13] rely 
heavily on ensemble techniques that increase 

computational demand, the proposed method 
offers a streamlined solution with comparable 
accuracy and greater adaptability. However, 
despite its advantages, the computational cost 
of the proposed method may still be higher 
than simpler alternatives, making ongoing op-
timization an essential area for future work.

A significant advantage of the proposed 
method lies in its utilization of an expanded, 
augmented dataset, which not only improves 
the model’s handling of imbalanced data but 
also enhances its ability to generalize effec-
tively across diverse scenarios. This is par-
ticularly important in real-world applications, 
where training data may not be evenly dis-
tributed. Additionally, despite its high com-
putational complexity, the method’s ability to 
extract both global and local features through 
the combination of CNN and Transformer 
networks justifies the computational demand. 
Other methods with similar or higher com-
plexity do not always achieve the same level 

Method
No. 

Classes
No.  

Images
Accuracy 

(%)
Computational 

Complexity
Advantages Disadvantages

Bodapati et al. 
[25]

5 3662 82.54 Medium
Gated-attention mechanism for  
enhanced lesion focus

Relatively lower  
accuracy

Ergun and Ilhan 
[13]

5 3662 95.55 High
Combines VGG and EfficientNet 
models with ensemble methods 
(stacking, hard/soft voting)

Higher computa-
tional cost due to 
ensemble

Fayyaz et al. 
[23]

5 3662 93 Medium
Ant colony optimization for feature 
selection

Lack of interpret-
ability

Menaouer et al. 
[28]

5 3662 90.60 Medium
Hybrid approach for visual risk  
detection linked to retinal ischemia

Requires extensive 
preprocessing

Sikder et al.  
[20]

5 3662 94.20 Medium
Gray-level and texture-based  
feature extraction

Limited to specific 
texture patterns

Proposed 
Method  

(CNN and 
Transformer)

5 3662 94.28 Medium

Combines CNN and Transformer for 
extracting local and global features, 
high generalizability, and strong  
performance on imbalanced data

Computational cost 
may be higher than 
simpler methods

CNN: Convolutional Neural Network; VGG: Visual Geometry Group

Table 5: Performance analysis of different Diabetic Retinopathy (DR) detection methods, com-
paring their diagnostic accuracy, computational complexity, and advantages, while highlighting 
limitations, such as lack of generalizability, inadequate handling of noisy or imbalanced data, 
and real-time applicability challenges.
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of accuracy.
The comparison of the proposed method 

with other techniques outlined in Table 5 
highlights substantial benefits across critical 
dimensions, including robustness, generaliza-
tion capability, and computational efficiency. 
Unlike methods, such as Bodapati et al. [25] 
and Fayyaz et al. [23], which lack detailed ac-
counts of how they address noise or variabil-
ity in the dataset, the proposed method excels 
in handling noisy data through its hybrid ar-
chitecture combining CNN and transformer 
models. This integration enables the model to 
extract both localized features and global con-
textual relationships, ensuring that even under 
challenging conditions like noisy inputs, the 
performance metrics remain stable. In contrast 
to methods like Sikder et al. [20], which rely 
on texture-based feature extraction but strug-
gle with variability and adapt poorly to noisy 
scenarios, this approach demonstrates greater 
resilience and robustness.

Another significant distinction is the pro-
posed method’s systematic approach to aug-
mentation and cross-validation. While several 
high-performing methods [5,6], such as Ergun 
and Ilhan [13], report impressive accuracy 
(e.g., 95.55%), they do not clarify the augmen-
tation strategies employed or their impact on 
generalizability. Similarly, these methods pro-
vide limited insights into how they mitigate 
dataset imbalances or ensure consistent per-
formance across diverse validation schemes. 
The proposed method explicitly incorporates 
data augmentation strategies, such as rotation, 
scaling, and brightness adjustments, to ad-
dress dataset imbalances effectively, enabling 
robust training and better generalization to un-
seen data. Furthermore, during rigorous vali-
dation using Leave-One-Out Cross-Validation 
(LOOCV), the proposed method maintains 
performance close to its baseline, unlike more 
sensitive methods like Ergun and Ilhan [13], 
which show noticeable declines due to reli-
ance on ensemble techniques with high com-
putational complexity.

Lastly, the proposed method balances diag-
nostic efficacy with computational feasibility. 
While Ergun and Ilhan [13] and Menaouer 
[28] rely on ensemble approaches or complex 
preprocessing steps, resulting in increased 
computational cost, the proposed method 
achieves competitive accuracy (94.28%) with 
medium complexity, making it more practi-
cal for real-world applications, particularly 
in resource-constrained or time-sensitive set-
tings. Together, these enhancements position 
the proposed method as a superior alternative 
for robust, efficient, and reliable DR detection.

Discussion
This study demonstrates the efficacy of a 

hybrid CNN-transformer model for DR se-
verity classification. By leveraging the com-
plementary strengths of CNNs for precise 
local feature extraction and transformers for 
modeling long-range dependencies, the pro-
posed approach addresses critical challenges, 
such as data imbalance and interpretability. 
Achieving state-of-the-art performance across 
key metrics, accuracy, sensitivity, specificity, 
and AUC, this model showcases its potential 
as a dependable and robust solution for DR  
diagnosis. 

When compared to previous studies, such as 
those by Kale and Sharma [18] or Zhang et 
al. [17], our hybrid approach offers significant 
advancements. Earlier works predominantly 
relied on CNN-based architectures, which are 
effective at local feature extraction but lack the 
ability to capture global dependencies critical 
for complex retinal image analysis. Our model 
bridges this gap, resulting in higher accuracy 
and robustness, particularly in underrepresent-
ed severity classes like severe and prolifera-
tive DR. Additionally, the model’s consistent 
performance across diverse datasets highlights 
its improved generalizability, a common limi-
tation of prior methods.

The clinical relevance of our findings is 
evident in the model’s practical applications. 
Beyond achieving high classification accu-
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racy, the model provides interpretable outputs 
that can be directly utilized by clinicians. This 
interpretability ensures that the model’s pre-
dictions are actionable, a crucial requirement 
in clinical decision-making. Furthermore, by 
employing advanced data augmentation tech-
niques to address class imbalance, the model 
has demonstrated reliable performance in real-
world scenarios, where noisy and diverse da-
tasets are common.

Our study has several notable strengths. 
The innovative integration of CNN and trans-
former mechanisms allows for comprehensive 
feature extraction, effectively bridging the gap 
between localized and global image analysis. 
The model’s robustness was validated on mul-
tiple datasets, including IDRiD, demonstrating 
its adaptability to diverse imaging conditions 
and populations. Moreover, its interpretability 
and consistent performance make it a valuable 
tool for enhancing DR screening and manage-
ment.

Despite its advantages, the study has certain 
limitations. The hybrid architecture, though 
highly effective, demands significant compu-
tational resources, which may hinder its fea-
sibility for deployment in resource-limited 
settings. Additionally, while validation was 
conducted on multiple datasets, further testing 
on larger, more diverse datasets is necessary to 
confirm the model’s broader applicability.

Looking ahead, future studies should focus 
on optimizing the framework for use in low-
resource environments by reducing computa-
tional demands. Expanding validation efforts 
to include real-world clinical settings and da-
tasets with broader demographic diversity will 
further solidify its generalizability. Addition-
ally, the potential for applying this model to 
other retinal diseases or multi-disease diag-
nostic frameworks offers promising directions 
for further exploration.

In conclusion, the proposed CNN-transform-
er model represents a significant advance-
ment in DR severity classification. Its strong 
performance across diverse datasets, coupled 

with its clinical relevance and interpretability, 
highlights its potential to improve patient out-
comes through early detection and precise se-
verity assessment. With further refinement and 
broader validation, this model could become 
a cornerstone in ophthalmology and AI-driven 
medical diagnostics.

Conclusion
The proposed method, which combines 

CNNs with transformer mechanisms, dem-
onstrates significant advancements in the cat-
egorizing of DR severity from retinal pictures. 
Unlike many existing approaches, such as 
CNN-based models or those trained on widely 
used datasets like APTOS or Messidor, this 
study successfully applies an automated deep 
learning model to a less-explored dataset, over-
coming inherent challenges such as data im-
balance and complexity. The proposed model 
(CNN and Transformer) consistently achieves 
high accuracy, with an average of 94.28% 
across multiple experimental conditions, in-
cluding data augmentation, cross-validation, 
and noise introduction. This highlights its ro-
bustness, adaptability, and strong performance 
on imbalanced datasets. These strengths be-
come particularly evident when compared to 
recent methods. While those methods achieve 
high accuracy, they may not generalize as ef-
fectively across different datasets. Moreover, 
the proposed method’s integration of CNNs 
for local feature extraction and transformers 
for capturing long-range dependencies lead to 
comprehensively assess retinal images, lead-
ing to more reliable and accurate classification 
outcomes. This dual approach ensures that the 
model not only excels in standard evaluation 
metrics but also maintains strong performance 
under various real-world conditions, making it 
a valuable tool for clinical applications. This 
research highlights the potential of combin-
ing CNNs with transformer mechanisms to 
address the complexities of DR classifica-
tion. The architecture’s notable performance 
across critical metrics, combined with its ro-
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bust generalization capabilities across diverse 
and complex datasets, establishes it as a highly 
promising tool for improving the accuracy and 
reliability of diabetic retinopathy diagnosis in 
clinical practice. Future research could aim to 
optimize this model further and extend its ap-
plication to other retinal diseases, enhancing 
its overall utility within the field of ophthal-
mology.
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