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Introduction

Diffusion-weighted magnetic resonance imaging (DWI) uses 
motion-sensitive gradients to trace self-diffusion of water mol-
ecules in tissues, which has some derivations such as diffusion 

tensor imaging (DTI) [1] and intravoxel incoherent motion (IVIM)  
[2, 3]. DWI sequences are being applied in many radiological exami-
nations to diagnose diseases and assess therapeutic procedures [4-9]. 
The signal decay of DWI depends on the random fluctuations of wa-
ter molecules within voxels [10]. Extracellular water molecules move 
freely compared to intracellular water molecules that are highly curbed 
in their displacements because of the presence of macromolecules, cell 
membranes, and intracellular organelles. Diffusion-Weighted-Mag-
netic Resonance Imaging (DW-MRI) sequences can measure the self- 
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ABSTRACT
Background: The intravoxel Incoherent Motion (IVIM) model extracts perfusion 
map and diffusion coefficient map using diffusion-weighted imaging. The main limita-
tion of this model is inaccuracy in the presence of noise. 
Objective: This study aims to improve the accuracy of IVIM output parameters.
Material and Methods: In this simulated and analytical study, the Kalman 
filter is applied to reject artifact and measurement noise. The proposed method puri-
fies the diffusion coefficient from blood motion and noise, and then an artificial neural 
network is deployed in estimating perfusion parameters. 
Results: Based on the T-test results, however, the estimated parameters of the con-
ventional method were significantly different from actual values, those of the proposed 
method were not substantially different from actual. The accuracy of f and D* also was 
improved by using Artificial Neural Network (ANN) and their bias was minimized to 
4% and 12%, respectively.  
Conclusion: The proposed method outperforms the conventional method and is a 
promising technique, leading to reproducible and valid maps of D, f, and D*.
Citation: Sharifzadeh Javidi S, Ahadi R, Saligheh Rad H. Improving Accuracy of In-travoxel Incoherent Motion Reconstruction using Kalman 
Filter in Combination with Neural Networks: A Simulation Study. J Biomed Phys Eng. 2024;14(2):141-150. doi: 10.31661/jbpe.v0i0.2104-1313.

Keyword
Intravoxel Incoherent Motion; IVIM; Perfusion Imaging; Diffusion Magnetic 
Resonance Imaging; Kalman Filter; Neural Networks, Computer 

Copyright: © Journal of Biomedical Physics and Engineering 
This is an Open Access article distributed under the terms of the Creative Commons 
Attribution-NonCommercial 4.0 Unported License, (http://creativecommons.org/
licenses/by-nc/4.0/) which permits unrestricted use, distribution, and reproduction 
in any medium, provided the original work is properly cited non-commercially.

141

https://orcid.org/0000-0002-6653-1854
https://orcid.org/0000-0002-7856-1786
https://doi.org/10.31661/jbpe.v0i0.2104-1313


J Biomed Phys Eng 2024; 14(2)

Sam Sharifzadeh Javidi, et al
diffusion of water in tissues as a factor of tissue  
cellularity at each voxel. High cellularity tis-
sues delimit water molecules motion more 
than regions such as necrosis in which cell 
density is reduced because of hurts or injuries. 

Random displacements of water molecules 
at body temperature are around 30 um in free 
space at about 50 ms. Although tissue cells 
and their substructures are in this size range 
and prevent water molecules movement. Thus, 
water movements in different tissues are not 
the same; accordingly, MR images can be 
sensitized to water molecules’ displacements 
by diffusion sensitizing gradients and mea-
sures signal decay related to water diffusivity  
[11, 12]. Both gradient magnitude and diffu-
sion time (duration of gradient operation) are 
essential in measuring signal intensity losses 
and making a factor so-called b-value, i.e. no 
motion in a voxel, no signal decays. However, 
motion can dramatically cause a signal loss 
and its ratio is proportional to the b-value. In 
other words, when the b-value is zero (b=0), 
non-restricted water (like CSF) is bright in the 
image. At lower b-values (smaller than 200), 
significant movements such as blood motions 
are gradually vanishing. Finally, water mole-
cule movements disappear at higher b-values, 
then just dense tissues or malignant tumors are 
bright in images [13-15]. 

Based on blood circulation, water displace-
ments are much greater than that of self-dif-
fusion such that for increased b-values, per-
fusion signal decay approaches near zero. D 
using higher b-values is calculated (greater 
than 200 (mm2)/sec), and f and D* are also 
computed at lower b-values (smaller than  
200 (mm2)/sec). In a nutshell, DWI imaging 
employs functional information (f and D* 
maps) as well as structural information (D 
maps) that could be deployed in the differen-
tiation of normal and diseased tissues.

In most clinical studies, only the apparent 
diffusion coefficient (ADC) was reported; 
thus, it is not possible to deploy perfusion in-
formation that can enrich diagnosis [16]. The  

interpretation of clinical DWI images is im-
portant in this approach since lesion identifi-
cation is based on ADC with both perfusion 
and diffusion characteristics mixed in itself 
[17]. Some limitations, such as long acquisi-
tion time and inaccuracy of IVIM parameters, 
restrict IVIM applications in clinical settings 
[3].

Single-shot echo-planar imaging (SS-EPI) 
techniques are used for imaging time and pa-
tient movement artifacts during DWI, offering 
significantly faster imaging [13]. Since noise 
and the portion of perfusion signal decay is in 
the range of noise level, the output parameters 
of IVIM are sometimes disturbed and inaccu-
rate [6]. Several solutions have been presented 
such as the segmented method, Bayesian dis-
tribution, and dictionary-based [18-22]; how-
ever, their results are not highly accurate. In 
this study, a two-step method was proposed 
to decrease these limitations: 1) using the  
Kalman filter, the bias of the diffusion coef-
ficient was minimized and 2) D* and f were 
calculated by neural networks.

Material and Methods
This is an analytical and simulation-based 

research. Following is a description of the 
IVIM model and our method.

IVIM
Le Bihan introduced the IVIM model in 

1986 [2, 23] and formulated IVIM models as 
follows equation (1):

Sb
 = fS0e

-bD*+(1-f)S0e
-bD                              (1)

where Sb and S0 are signal intensities with 
and without b-values; D, f, and D* are dif-
fusion coefficient, blood, and pseudo-diffu-
sion coefficient, respectively. Due to another 
source of motion, blood motion, in living tis-
sues compared to non-living objects, it is pre-
dictable that the behavior of signal intensity 
decay would be bi-exponential in living tis-
sues. The first exponent is because of blood 
motion and self-diffusion of water causes a 
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second exponent.

Simulations
This research aims to improve the IVIM 

parameters’ reproducibility by employing the 
Kalman filter and neural networks. To the best 
of our knowledge, the most common method 
for IVIM parameters is a two-step or segment-
ed approach, presuming perfusion parameters 
for higher b-values (b>200) that were close to 
zero. Then D is calculated in the first step us-
ing high b-values. To calculate f and D* based 
on the estimated D and lower b-values (b<200) 
intensities, in the second step, a curve fitting al-
gorithm like Levenberg–Marquardt algorithm 
was used. However, these methods calculate 
parameters, their outputs are not entirely ac-
curate because they eliminate the effects of the 
perfusion parameter in the first step, showing 
its impact with a bias. The second step also 
suffers from noise and also nonlinear-model 
fittings depend on initial values and boundary 
conditions; therefore, the IVIM results tend to 
approach boundary conditions. 

A combination of the Kalman filter and artifi-
cial neural network was proposed to overcome 
these limitations. Since some parameters were 
to be initialized, all of the needed parameters 
were calculated using an ANN. After that, to 
reduce D’s bias using the Kalman filter, the 
perfusion effects were considered as a variable 
input that decreases with increasing b-value. 
Finally, a neural network was implemented for 
nonlinearity and noise in the second step. 

The proposed method is applied to estimate 
IVIM parameters in a Monte-Carlo simula-
tion. First, IVIM signal intensities were gen-
erated using Equation (1) and contaminated 
by additive complex Gaussian noise such that 
SNR=100, which was in the range of rou-
tine DW imaging. IVIM output parameters 
were calculated using the proposed method 
by 100,000 times. Finally, results and ground 
truth were compared, and bias and correlation 
of each parameter were calculated. Two setups 
were considered: 1) checking the accuracy of 

the Kalman filter in estimating true D and 2) 
examining the validity of all parameters in a 
realistic range of possible physiologic. In the 
first experience, parameters were constant  
D=0.001, f=0.1, and D*=0.01. However, 
on the other setup, a complete range of pos-
sible physiologic data was considered and 
outputs were the result of the combination 
of Kalman filter and neural network. In the 
second experience, D, f, and D* were in the 
range of [0.0003-0.0021], [0.02-0.34], and  
[0.009-0.034], respectively. The process of the 
proposed method is depicted on a flowchart 
(see Figure 1a).

Kalman Filter
The Kalman filter is a recursive method for 

minimizing the error of the estimation opti-
mally [24] and applying widely in navigation 
systems and the field of machine vision to 
estimate the state of a dynamic system from 
the noisy measurement [25]. The Kalman fil-
ter is also an appropriate approach for esti-
mating the DWI image parameters when the 
new DWI measurements are used to modify 
the previous amount. Since the Kalman filter 
is formulated based on a state-space model, 
the problem should be redefined in state space 
and this filter predicts the value based on the 
system and updates the predicted values based 
on new observations. The initial guesses of pa-
rameters are set to the results of ANN.

In methods such as the segmented method, 
perfusion decay at high b-values almost equals 
zero; then the IVIM model is converted to one 
compartment diffusion model by Stejskal-
Tanner [10] so that the diffusion coefficient is 
easily calculable by Equation 2, 3. 
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In the proposed method, the effect of perfu-
sion decay on the contrary with other methods, 
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almost equal to zero, is considered. 
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Where b1 and b2 are low and high b-values, 
Sb1 and Sb2 are signal intensities for b1 and 
b2, respectively. α is a perfusion portion of 
the signal, β is (1-α)/S and γ is the β2/β1. After 
some simplifications described in Equations 
(4, 5, 6), finally, Equation (7) is used in the 

Kalman filter, where u is the input related to 
perfusion decay.

Neural Networks
In this work, two feed-forward neural net-

works with the default setting of one hidden 
layer were implemented using the Neural 
Network Toolbox provided by Matlab (Ver-
sion: R2018a, The Mathworks Inc., Natick, 
MA, USA). The first ANN is composed of 
the input layer, including 14 inputs represent-
ing the DWI signal intensity for each b-value, 
one hidden layer with 14 nodes and the out-
put layer illustrated the amounts of D, f, and 
D* (Figure 1b) feeding the Kalman filter. The 
second ANN is composed of the input layer, 
including 15 inputs representing the DWI sig-
nal intensity for each b-value and estimated 
D (output of Kalman filter), one hidden layer 

Figure 1: a) Flowchart of proposed method b) neural networks that estimated all of the output 
parameters c) estimated diffusion coefficient, which is the result of the Kalman filter, fed into 
the neural network and perfusion parameters are estimated by neural network
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with 15 nodes, and the output layer returned 
the amounts of f and D* (Figure 1c).

Statistical analysis
A T-test was used to compare the proposed 

and conventional methods’ estimated param-
eters with ground truth (actual values). Fur-
thermore, the Pearson correlation test was per-
formed to check the similarity between ground 
truth and calculated results.

Results
According to the results of the first experi-

enced: 1) reduction of noise is possible in the 
light of using filters such as the Kalman filter, 
modifying the diffusion coefficient and reduc-
ing the effects of noise (Figure 2), i.e. the vari-
ance is reduced and 2) blood movement in the 
capillary network as a source of unwanted mo-
tion can be predicted and canceled by exploit-
ing the Kalman filter. As seen in Figure 3, the 
Kalman filter not only reduced noise effects 
but also highly rejected blood movement arti-
facts. Therefore, D’s bias decreased less than 

1%.
The Kalman filter estimate of D was 

0.0010±1.3×10-5 (mean±standard devia-
tion), while the conventional estimate was 
0.0012±3.6×10-5, where the actual D value 
was 0.0010 (mm2/s). The T-tests results indi-
cated that the estimation performance of the 
proposed method is significantly better than 
the conventional method (P-value<0.01). The 
results of the conventional method are associ-
ated with a bias due to the effect of ignoring 
the blood flow in the capillary network. On 
the other hand, the Kalman filter can consider 
the effects of microcirculation blood flow as 
inputs and lessens its impact on estimations. 
Comparing Kalman filter results and actual 
values using the T-test shows no significant 
alteration (P=0.25). However, the estimates of 
the conventional method are substantially dif-
ferent from ground-truth values and Kalman 
filter estimates (P<0.0001) (Table 1).

Finally, using Kalman filter output as an in-
put for the second neural network improved 
the estimation of IVIM-outputs significantly. 

Figure 2: Measurements of diffusion coefficient (D) have been shown as blue color and vary 
because of noise, although; the Kalman filter improves the result and increases accuracy.
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The bias of f and D* reduced to about 4% and 
12%, respectively (Figure 4 d-f). On the con-
trary, the results based on just neural networks 
are illustrated in Figure 4 a-c, i.e. estimating 
IVIM-outputs is not as accurate as of combin-
ing Kalman filter and neural networks. The 
bias of just neural networks for diffusion co-
efficient (D) is about 11%, that of blood frac-
tion (f) is around about 8%, and this amount is 
in the range of 16% for pseudodiffusion D*, 
which are higher than their counterparts men-
tioned above.

Discussion
The IVIM model is widely used and consid-

ered as a promising method due to benefit of 
both functional and structural information in 
the form of perfusion and diffusion images, 
without any need to contrast agent injection. 
Furthermore, this is a noninvasive method 
compared to conventional perfusion MR im-
aging such as dynamic contrast- enhanced 
(DCE) and dynamic susceptibility contrast-
enhanced (DSC), enriched by diffusion infor-
mation simultaneously [3]. After considering 
these advantages, because of the nonlinear 
behavior of the IVIM model and noise, IVIM 
output must be calculated carefully. 

IVIM has three outputs: diffusion (D), blood 
fraction (f) and pseudo-perfusion (D*) that D 
is more robust than f and D*. Perfusion-related 
parameters are vulnerable to contamination by 
noise. Some studies have proposed different 
methods to increase the accuracy of these out-
puts [18, 26]. Novel techniques such as neural 
networks showed a good performance in esti-
mating IVIM outputs [27].

Other methods such as Bayesian and non-

Figure 3: Comparison of results of Kalman-Filter and conventional method to calculate diffusion 
coefficient (D), as it can be seen D in the conventional method has a bias.

T-Test h P-value 
Kalman Filter vs True values 0 0.2440

Conventional Method vs True values 1 1.8563e-48
Conventional Method vs Kalman filter 1 2.5404e-33

Table 1: Statistical comparison of Kalman 
filter and conventional method by T-Test. 
where h is the decision based on T-Test, 0 
means that zero hypothesis is not rejected 
and 1 means that alternative hypothesis  
significantly is meaningful.
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linear solutions need some defined distribu-
tions and initial parameters that might mislead 
the outputs and sometimes their effects are 
recognizable in approaching boundaries and  
initial values [28]. Since neural networks do 
not need this kind of initialization and evolve 
their model just based on input data, it im-
proves the IVIM output accuracy and confirms 
that its output is reliable and reproducible. Ad-
vantages of neural networks compared with 
other solutions consists of 1) no need to initial-
ize, 2) no approaching boundary condition, 3) 
no need to define a distribution for parameters, 
and 4) with the robust system in the presence 
of noise. Therefore, training is a crucial factor 
for the neural network. 

Observation is considered as a way to im-

prove the estimation power of neural networks 
and purified diffusion coefficient is added 
to the input layer in the proposed method. 
Since the Kalman filter purifies the diffusion  
coefficient, using estimated D as a new input 
increases the accuracy of perfusion param-
eters (f and D*). 

A bias is in D’s estimates of other methods 
because of disregarding perfusion signal de-
cay in higher b-values. Kalman filter considers 
perfusion factors and increases the accuracy of 
the D’s estimates successfully. Statistical tests 
reveal that the proposed-method estimations 
outperformed the conventional method. The 
conventional approach results in a bias in DWI 
estimations that eliminate micro-vessel blood 
circulation displacements. However, consider-

Figure 4: Comparison of using neural networks by itself and neural networks in combination 
with Kalman filter is depicted as; a) b) c) represent results of diffusion coefficient (D), fraction 
of blood (f) and pseudodiffusion coefficient (D*) when just the neural network is applied. d)  
represents the result of Kalman filter e) f) represent f and D* as the results of the neural  
network when estimated D is used as the input in the network.
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ing the impacts of microcirculation blood flow 
as input, the Kalman filter reduces its effects 
on estimates. Finally, a combination of Kal-
man filter and neural networks is applied. The 
final results endorse that the proposed method 
improves the validity of results successfully.

Conclusion
The Kalman filter along with the neural net-

work increases the accuracy and validity of 
the IVIM model. Although the IVIM model 
benefits from both functional and structural 
information, the lack of validity in the low 
SNR regime delimits its application in clinical 
settings. The Kalman filter also improves the 
quality of IVIM images, resulting in increas-
ing the accuracy of perfusion parameters. Fi-
nally, the results caused the reliability of the 
IVIM model, improving diagnostic accuracy 
in a fast and non-invasive way.
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