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Review Article

Colorectal cancer (CRC) is a prominent cause of malignancy-associated death worldwide. This disease is 
predominantly symptomless as it advances to the highest stages, meaning that screening schemes aimed at 
early diagnosis are required to lower the prevalence and fatality rate. We aimed to review the literature on 
different molecular procedures for detecting stool-based biomarkers of CRC. 
We reviewed papers from Google Scholar and PubMed on different molecular procedures for detecting stool-
based biomarkers of CRC with no time limitation. 
An integrative framework of all epigenetic and genetic modifications was studied, representing more acceptable 
specificity and sensitivity for the diagnosis, treatment, and drug response/outcome evaluation of CRC compared 
to other traditional procedures. Differential expression analysis of stool-derived RNA (sRNA) and stool DNA 
(sDNA) testing for ultrasensitive mutations, methylation, and fragmentation patterns can lead to an accurate, 
early-stage diagnosis and a better prognosis for CRC patients.
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  Abstract

Introduction

Colorectal cancer (CRC) is relatively common and 
on the rise worldwide in both sexes, especially 

in countries with high rates of saturated fat intake 

and cigarette smoking (1). To minimize the mortality 
caused by CRC, the fecal immunochemical test (FIT) 
is recommended for screening in many countries, 
though colonoscopy remains the gold standard for 
screening in the USA and Germany (2-4). Contrary 
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to non-invasive testing, invasive procedures like 
flexible sigmoidoscopy and colonoscopy facilitate the 
conduction of polypectomy to remove premalignant 
injuries, reducing the prevalence and fatality of CRC 
(5). Regardless of the decrease in CRC prevalence 
and fatality with screening, screening measures still 
need improvement as some cases are missed (6, 7). 
As an invasive screening measure, colonoscopy is 
underutilized due to the costs involved, procedural 
pain, limited service providers, and the need to 
schedule the procedure, prepare the bowel, and cease 
working (8, 9).

When examining the advantages of invasive vs. 
non-invasive screening tools for colorectal tumors, it 
is essential to remember that discovering remediable-
stage tumors will feasibly diminish CRC mortality; 
precancerous lesions can be removed, leading to a 
lower CRC frequency (10). For example, the yearly 
guaiac fecal occult blood testing (gFOBT) reduces 
CRC fatality by nearly 14% (compared with no 
screening), but it does not lessen CRC occurrence 
(11, 12). A recent study surveyed the findings of CRC 
screening schemes in Europe; for an affirmative FIT, 
the prognostic value for progressed polyps ranged 
from 5–30% (13). However, serrated adenomas 
larger than or equal to 1 cm are rarely diagnosed by 
FIT screening.

Novel non-invasive screeening tests include multi-
target stool DNA (MT-sDNA) (Cologuard®, Exact 
Sciences Corporation, Madison, WI), methylated 
NDRG4, SEPT9, and SDC2 assays, as well as the 
DNA mutation panel (point mutations in K-Ras, 
APC and p53 genes; microsatellite instability 
marker BAT-26 deletions; and long DNA assay). 
MT-sDNA uncovers remediable-stage colorectal 
malignancy with 93–100% sensitivity and 
outperforms FIT in the diagnosis of progressed 
polyps and serrated precursor lesions, sharing an 
association with the risk of development to tumor 
(14-17). MiRNAs are strongly linked with infectious 
bowel diseases; a new survey has exhibited their 
function in controlling inflammatory reactions 
and gastrointestinal disorders. Stool miRNA is 
linked with intestinal barrier malfunction, which 
can induce inflammatory bowel disease (IBD)—a 

condition associated with CRC. Hence, this 
biomarker is a strong biosignature for checking 
and verifying CRC with high specificity and 
sensitivity (18, 19) (Table 1). We aimed to review 
the literature on different molecular procedures for 
detecting stool-based biomarkers of CRC. Advances 
in molecular biomarker research and the innovation 
of accurate non-invasive assays facilitate improved 
CRC screening, diagnosis, and prognosis prediction, 
resulting in better patient outcomes.

Experimental Approaches for Extraction, 
Detection, and Assaying of Stool DNA and RNA 

Although basic experiments and clinical 
investigations have shown the importance of DNA 
and RNA biomarkers in CRC diagnosis or prognosis, 
but their practicability need to be evaluated. In 
addition, stability and persistence are crucial features 
of tumor biosignatures, as the specimen must remain 
viable during transfer and storage ahead of testing 
(23). Fecal specimens provide a noninvasive solution 
to exfoliate colonic epithelial cell indicators of CRC 
incidence. Nevertheless, one of the most serious 
difficulties in population-based research on stool 
indices is collecting sufficient tests from those who 
suffer from CRC (24, 25). This problem is worsened 
because usual stool-gathering systems deal with 
fresh or frozen specimens that restrict their use 
in communal processing. Nucleases in feces can 
quickly break down, so estimates must be made to 
counter their effects. As this issue can affect human 
genomic DNA and block PCR, diagnostic assays 
were planned to identify, compute, and determine the 
background over which this bias is the lowest (26-
28). Surveys expressed that specimens gathered in a 
fixation dilution (Buffer EDTA 20 mM, Buffer EDTA 
100 mM, RNAlater RNA Stabilization Reagent 
(Qiagen); Cytolyte (ThinPrep, Cytyc Corporation); 
Buffer Genefec (NORDIAG); Buffer α-Wasserman 
and refrigerator storage) increase DNA durability 
and entirety in a way that undamaged nucleic acids 
symbolic of intact cells remain identifiable, with the 
best results achieved with the 100 mM EDTA buffer 
frozen after 24 hours (29). The PCR multiplications’ 
findings showed that DNA multiplication was 

Table 1: Currently recommended non-invasive approaches for CRC screening
Fecal-based test Repetition Indication of validity Sensitivity Specificity
FIT Yearly Systematic review and meta-analysis studies exhibit superior sensitivity 

vs. gFOBT
79% 94%

gFOBT Every 
1–2 years

Valuable non-invasive advantages compared to10-yearly colonoscopy 
along with low sensitivity for proximal colonic injuries detection. 
Meta-analysis indicate a low mortality rate of up to 14% in average-risk 
populations (20)

72.2% 90%

MT-cDNA Every 3 
years

Valuable non-invasive screening assay compared to FIT for primary-
stage CRC and advanced polyps originated from right or colonic 
injuries (21).

85% 90%

MT-sRNA Not 
Established

Multimarket fecal RNA preferable to FIT or FOBT for evaluating 
proximal CRC by low quantity of required sample (22) 

29–90% 75–95%

FIT: Fecal immunochemical test, gFOBT: Guaiac fecal occult blood testing, MT-sDNA: Multi-target stool DNA, CRC: Colorectal 
cancer, MT-sRNA: Multi-target stool RNA
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considerably lowered in specimens, although 
specimens kept in fixation buffer provided increased 
band intensity.

Similarly, the addition of buffer to specimens before 
environmental temperature incubation resulted in an 
important rise in DNA constancy and rigidity with 
no PCR blockage (because of the presence of various 
factors such as hemoglobin breakdown output, bile 
salts, and complicated polysaccharides), compared 
to the corresponding specimens without buffer 
(30-33). The quantitative evaluation of stool DNA 
emphasized multiple concerns crucial for additional 
studies in this scope. Initially, the maximum 
sensitivities were achieved when the duplicates 
were small, ideally lower than 100 bp. This is due 
to DNA degradation in tumor cells that experience 
necrosis or apoptosis before or after secretion into 
the stool because proximal section of colon with 
a hydrated milieu induce DNA destruction more 
compared to nucleases and enzymatic hydrolysis 
(34-36) while colonic distal sections with more 
hydrated enviroment will make a very good milieu 
to conserve the DNA (37). To offset for dissimilatory 
in hydration conditions, the waterless mass should 
be specified, for instance, by freeze-drying. While 
optimal for the conservation of the DNA, freeze-
drying is time-taking, effortful, and not achievable 
in all laboratories. An additional confusing factor 
has been the necessity for quantitative isolation of 
human DNA from every portion of fecal samples. 
Consequently, to overcome this obstacle, we can 
measure the quantity of human DNA in relation to 
the quantity of whole DNA. As fecal specimens are 
multiplex in constitution, sampling errors caused 
by testing small fractions can be avoided by testing 
different fractions from every fecal specimen. The 
pre-handling characteristics of fecal container 
specimens control DNA efficacy, and an appropriate 
DNA extraction kit (e.g., the QIAamp DNA Stool 
Mini Kit) must be used (37). 

Difficulties in eradicating PCR blockers from fecal 
samples have been thoughtfully announced, and, for 
various cases, the dilution of specimens affirms the 
necessity to supply a fast and direct procedure for 
multiplication. Although, dilution is just workable 
if the extent of DNA is adequately great. Thus, 
for utilizations containing low-copy objectives 
and contaminating bacterial DNA, the dilution 
solution is usually unfavorable and occasionally 
inconceivable. Other techniques have been applied 
to lighten the impacts of restrictive materials of PCR, 
like the utilization of segregation columns (38, 39). 
They introduce several difficulties, such as lower 
DNA outputs, fewer DNA targets, and reduced 
amplification potential.

Spermidine, a polyamine synthesized, is reported 
to possess a high affinity for plant and fecal DNA, 
making it useful as a PCR promoter. It is assumed that 
spermidine may obstruct the activity of PCR blockers 
(probably through attaching them and or producing 

them more thermolabile, or, preferably, attaching 
to DNA at small concentrations may significantly 
reduce the activity of the PCR blockers). Beyond a 
specific concentration, spermidine no longer restricts 
PCR blockers, probably because of steric influences 
or saturation, and begins extensively attaching to 
DNA, thereby suppressing PCR. Noteworthy, the 
addition of spermidine drives a favorable trend of 
the melting temperature of the fecal and normal 
DNA and aids the multiplication productivity of 
methylation indexes by means of the Quantitative 
Multiplex Methylation-Specific PCR (QM-MSP). 
Spermidine adding is simpler and more applicable 
than dilution or filtration techniques and may 
remarkably ameliorate the assessment of methylation 
rates (in the proximity of 1 mM spermidine and 100 
ng of fecal DNA).

Mutant DNA constitutes a small proportion 
(median, 0.32%; mean, 1.89%) of the whole DNA 
from stool specimens of tumor patients, limiting 
its effect on quantifying the integrity of the normal 
and mutant DNA. The discovered enhancement 
of DNA stability in tumor cases arises from the 
secretion of bigger DNA pieces from control cells 
across the cancer milieu into the stool flow (40). 
These tumors are commonly penetrated by specific 
inflammatory cells, which might donate large DNA 
fractions of the control sequence. Hence, minimal 
DNA template molecules are needed to understand 
the sensitivity of BEAMing (41). The sensitivity 
of BEAMing for each tested mutation is so that a 
minimum single mutant pattern be sensed within 
10,000 control patterns (0.01%). For many mutations, 
the sensitivity is as great as a single mutant pattern 
enclosed by 800,000 healthy patterns (0.0013%) 
(42). The sensitivity is confined exclusively via the 
miss rate of the polymerase employed in the first 
amplification. The application of this more-tech 
sensitivity in the procedure calls for a sufficient 
amount of DNA templates. For instance, if just 
2000 scheme molecules are applied to each test, 
the highest sensitivity is 0.05% instead of 0.01%. 
Getting this amount of patterns is not difficult for 
fecal specimens but is commonly difficult for plasma 
(43). The upper sensitivity of BEAMing measuring 
mutations in feces versus plasma is caused by the 
proportional parts of mutations detected in the 
stool of cases with various-stage cancers. However, 
feces supply an almost unlimited stock of DNA, 
and additional methodical problems influence the 
method outputs. For instance, feces include a range 
of PCR blockers and bacterial DNA, demanding 
sequence-specific traping of human genomic 
DNA (43). Sequence-specific DNA fractions were 
filtrated from the whole nucleic acid provided by 
performance oligonucleotide-installed hybrid traps 
(magnetic bead-based sequence-specific). Every 
traping step was performed by adding guanidine 
isothiocyanate mixture (GITC), (GIBCO, Invitrogen, 
Carlsbad, CA), including biotinylated sequence-
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specific oligonucleotides and Streptavidin-tagged 
magnetic beads to the specimen and subsequently 
the washing of the bead/hybrid trap systems 
including the sequence-specific traping of DNA 
with TE over thermal denaturation. Objective human 
DNA fractions were also detached from absolute 
nucleic acid sequences using electrophoretical force 
through a capture sheet which comprised from 
human sequence- specific trap located inside an 
acrylamide matrix (44, 45). Trap excavators were 
polymerized in the form of 37-mer oligonucleotides 
under 5´-Acrydite alterations (Integrated DNA 
Technologies, Coralville, IA) (43). However, these 
assays have not yet been developed to purify small 
DNA fractions that embrace the target’s mutations. 
The conclusion is that mutant parts as a subordinate 
of size presumably differ under the specific mutation 
in a case-particular pattern, which relies both on the 
healthy DNA’s origin and the amount of breakdown 
of the cancer DNA pieces. This matter may influence 
the outputs via two paths. First, it likely accounts for 
the vast discrepancies between the conclusions of 
mutant parts detected over two genes in two cases. 
Second, it would describe the reason they were 
incapable of measuring mutations in many cases. 

Enhancement of the trap materials might later 
raise sensitivity over the 92% rate achieved through 
methylation-based BEAMing in the Diehl et al. study 
(46). BEAMing was named after its components 
(beads, emulsions, amplification, and magnetics); 
it transforms unique DNA template molecules to 
individual beads involving tens of thousands of 
precise transcripts of the template. The higher 
sensitivity of measuring mutations in feces versus 
plasma is because of the comparative deductions of 
mutations found in the stools of subjects with various 
grade cancers (42). 

Quantitative real-time PCR (qPCR), microarray, 
and next-generation sequencing (NGS) are the more 
frequently performed assays for estimating fecal-
established miRNA. MiRNA varies from mRNA 
because sequences are short (almost 22 nucleotide) 
and are usually less frequent. Therefore, qPCR 
assays should prevent primer dimers and guarantee a 
small measuring threshold. Recently, two techniques 
have sought to overpower these problems: stem-
loop RT and locked nucleic acid (LNA) primers 
(47, 48). These primers feasibly ameliorate miRNA 
identification sensitivity and specificity across linear 
primers through spatial limitations, base-stacking, 
and raised thermal constancy. Although the LNA-
based assays have performances analogous to those 
of stem-loop primers, further assessments are 
required, and specificity could be an issue (49). 

To determine new biosignatures for CRC screening, 
microarray has been broadly accustomed to 
calculating total human miRNA in stool and blood 
specimens. Numerous microarray platforms have 
been prepared for miRNA estimation, involving 
SurePrint (Agilent), GeneChip (Affymetrix), and 

miRCURY LNA (Exiqon) (50). Every platform 
has schemed probes particular for mature miRNA 
sequences, while chief dissimilarities include 
attaching and filtration processes besides fluorescent 
dyeing. Microarray techniques may be utilized to 
detect various miRNAs concurrently; however, 
different shortcomings restrict their practicability 
in medicine (51). Moreover, result standardization 
is complicated and time-taking, and no individual 
procedure has been commonly affirmed to calculate 
microarray results, notably miRNA, because of the 
minute quantity of miRNA and poor expression 
status. The normal roadmap includes RNA 
extraction, library construction, sequencing, and 
input evaluation. Library construction includes 
5′ and 3′ adapter binding and enlargement (52). 
Adapters are program-accurate and produce a bar 
code that is admitted throughput multiplication 
via either bridge PCR (bPCR) or emulsion PCR 
(emPCR). Compared with the Sanger sequencing 
platform, NGS is not restricted by the practice of 
gel or polymer segregation media and hence permits 
various specimens to be driven simultaneously (53, 
54). NGS is perfect for new indicators because it 
can cross-examine the whole genome. Nonetheless, 
challenges and limitations also exist. Similar to 
microarray, NGS result calculating is sophisticated 
and not normalized. Multiple surveys have cited 
NGS in blood specimens as beneficial to spot desired 
miRNA for CRC screening; however, these surveys 
are mostly certified by another better-focused 
platform such as qPCR (55, 56). 

Fecal-founded approaches are reviewed as the 
greatest profitable type for plenty of motive. Based 
on straightforward histological inspections, CRC and 
polyps shed several humoral cells and their residues 
within the mucocellular layer covering the colonic 
lumen. The noticeable molecular alterations induced 
by CRC cells are reportedly introduced in the feces 
sooner than in the blood (57). The real superficial 
zone of the epithelial single-coat of tumors and 
neoplasia is likely 200 times bigger than expected, 
along with macroscopic results. Nevertheless, against 
ample cellular shedding from gross surface zones 
and neoplastic cells in the mucocellular regions, shed 
colonocytes scarcely stay alive if they are exfoliated 
in the right colon owing to intra-luminal lysis. 
Accordingly, following cell lysis, the measurement 
of components of the shed cells, like DNA, miRNA, 
and proteins, is imaginably valuable (58, 59).

Stool DNA/RNA-based Investigations 
The recognition of CRC-specific DNA indicators 

in feces has been discussed comprehensively. The 
recognition of fecal RNA indicators has not been 
as widely discussed as DNA indicators because 
fecal RNA is more unstable than fecal DNA. 
DNA indicators are distinctive as long as they 
immediately originate from cancerous cells (49, 60). 
Methodological approaches in RNA conservation 
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buffers have progressed to this step to survey CRC 
cancer-particular RNA transcripts in the form of 
fecal biosignatures. The exclusively fecal DNA 
test marketed in the US is ColoSure (Laboratory 
Corporation of America, https://www.labcorp.com), 
which offers a 53–83% specificity of CRC detection 
based on measuring vimentin methylation (61). The 
implementation of such biomarkers in measuring 
progressed polyps has not still been outlined, although 
the sensitivity and specificity for CRC are 72.5–
83% and 53–86.9%, respectively (61). Importantly, 
upregulated copies of mRNA transcripts including 
MMP7 and PTGS2 are considerably specific to 
colorectal tumors. CRC gene expression patterns 
(transcriptomics) and untranslated RNA expression 
patterns like miRNAs have recently been assessed 
to distinguish applicant transcripts and study their 
viable uses in the form of CRC exposure tools (62). 
Recently, Link and coworkers indicated elevated 
preciseness of miRNA isolation and expression tests 
in fecal specimens where miR-106a and miR-21 were 
constituted to have a great expression in CRC or 
adenoma cases compared with controls (63).

Genetic Indicators of CRC in Stool
Detection of Genetic Variations
According to the tumorigenesis model of CRC 

development, primary tumors most commonly 
constitute massive quantities of intestinal cells, 
which abundantly stay inside the mucocellular layer 
of the colorectal mucosa. In individuals with CRC, 
tumor cell-derived factions of the mucocellular layer 
are excreted with waste material; these exfoliated 
cells are non-apoptotic neoplastic colonocytes, 
contrary to healthy mucosal epithelium exfoliated 
cells that stem from apoptotic processes (64). The 
colorectal carcinogenetic pathway can be triggered 
by repeated genetic mutations and/or epigenetic 
alterations that lead to continuous evasion of 
physiological apoptosis (65). Subsequently, such 
non-apoptotic dysplastic colonocytes following 
exfoliation from lesioned mucosa and preservation 
in the stool can secrete undamaged long-DNA 
(L-DNA) fragments as long as 200 bp or more 
for testing cancer-corresponding DNA alterations 
(66, 67). Isolation of cell-arising DNA, RNA, and 
protein for fecal biomarkers detection and analysis 
is another feasible and appealing method for early 
detection and screening of colorectal cancer (25, 68). 
Various methodological achivements lead to precise 
fecal DNA measurment assays by employing DNA 
supportive buffer during feces gathering, capable 
polymerization techniques, and specific multi-
biomarker platforms. A pilot study investigated 
mutations in the APC, TP53, and KRAS genes 
along with BAT26 microsatellite instability via 
the modified solid-phase mini-sequencing method 
and reported both very high sensitivity (91%) and 
specificity (93%) for CRC diagnosis (69, 70). It is 
worth noting that all data collected from Ahlquist’s 

survey also affirmed the accuracy of such alternative 
molecular tests for colorectal neoplasia screening 
(CRC and adenomas) compared with the current 
FOBT assay (71).

Given previous preclinical case-control studies, 
modern multi-biomarker fecal DNA assays, 
particularly regarding methylated indicators 
(NDRG4, BMP3, TFPI2, Vimentin tested by the 
Quantitative allele-specific real-time target and signal 
amplification (QuARTS) assay), mutation markers 
(KRAS mutations tested by direct sequencing), and 
an evaluation of fecal hemoglobin (Hemo Quant 
test), have been demonstrated to diagnose CRC and 
advanced adenomas at high sensitivity (85% and 60%, 
respectively) (69). Similarly, a Controlled clinical 
trial study also reported a high diagnostic precision 
of DNA analysis for the early detection of colorectal 
tumors (92.3%) and progressed premalignant lesions 
(42.4%) (14). Furthermore, the study of the size and 
purity of L-DNA fractions (oligonucleotide-based 
hybrid captures) and individual Alu sequences 
(qPCR technique) besides KRAS mutational analysis 
(Droplet Digital PCR (ddPCR) and single-strand 
conformational polymorphism (SSCP) methods) 
in stool samples indicated these measures as 
supplemental non-invasive approaches to routine 
screening strategies for CRC (72-74) (Table 2). 

mRNA Indicators of CRC in Stool
The utility of discerning stool messenger RNAs 

(mRNAs) for CRC checkups has already been 
displayed, although mRNAs are deemed relatively 
unstable in stools compared with DNA, proteins, 
and microRNAs. Several trials have declared the 
uncovering of assorted CRC-specific mRNA, 
namely, MYBL2, MMP7TP53, and PTGS2, at 
elevated amounts in specimens of cases with CRC 
compared with the specimens of normal participants. 
Despite that, different sensitivity values were 
reported for MMP7 (31–65%) and PTGS2 (34–90%) 
based on the mRNA origin, extraction assay, and 
PCR calibration settings. The overrepresentation 
of ITGA2, PTGS2, ITGA6, and CEACAM5 in the 
multitarget fecal mRNA screening of AA subjects 
and the risk of degradation of fecal mRNAs must 
also be considered when using mRNA targets (62, 
90) (Table 2).

Epigenetic Markers of CRC in Stool
Promoter Methylation of Stool DNA

Genetic and epigenetic alterations come together in 
a complex set of pathological molecular conductors 
in colorectal neoplasia formation, representing the 
molecular steps of adenoma-carcinoma transition 
(91). In particular, one of the fundamental epigenetic 
processes associated with colorectal neoplasia 
pathogenesis is the elevated CpG islands methylation 
of specific promoter regions that dysregulates cellular 
growth, division, and apoptosis (92). Therefore, 
evaluating such epigenetic variations at the DNA 
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level by repeated cfDNA extraction from colonocytes 
shed in stools may allow the accurate diagnosis and 
screening of CRC and adenoma lesions (93). The 
analytical sensitivity of a multimarker promoter 
methylation panel (MGMT, hMLH1, and vimentin) of 
fecal DNA tested by Sure methylation-specific PCR 
or MS-PCR was reported at 75.0% for CRC vs. 59.6% 

for colorectal adenomas. The high specificity of stool 
methylated SFRP1 gene was also reported (76). The 
frequent epigenetic promoter hypermethylation of 
multiple major genes, including ATM, MGMT, 
hMLH1, APC, and HLTF, varied from 45% to 55% 
(86), besides the confident high sensitivity and 
specificity of methylated vimentin (MBD capture and 

Table 2: Review of approaches to detecting DNA and RNA genetic and epigenetic biomarkers in feces samples for colorectal 
cancer screening and diagnosis. 
Biomarker Approach Assay Sensitivity Specificity Reference
APC, TP53, KRAS genes and BAT26 Mutation & 

microsatellite 
instability 
testing

Modified solid-phase 
mini sequencing, PCR 

91% 93% (69)

NDRG4, BMP3, TFPI2, MGMT, hMLH1, 
vimentin, and KRAS 

Methylation and 
mutation testing

QuARTS and direct 
sequencing 

75-85% 84-92% (69)

Fecal DNA integrity L-DNA 
fractions

Oligonucleotide-based 
hybrid captures 

52- 56.2% 92-96.3% (73)

KRAS Mutation testing ddPCR and SSCP *NA * NA (72)
Alu Repetitive DNA 

sequences
qPCR 44% NA (75)

SFRP1 Methylation 
testing

PCR 52% 92% (76)

ATM, MGMT, hMLH1, APC and HLTF Methylation 
testing

PCR 75% 90% (77)

GATA4/5,NDRG4 Vimentin, SFRP2 Methylation 
testing

PCR 96.4% 82- 95% (78)

SDC2 Methylation 
testing

LTE-qMSP 77.4–81.1% 88.2–98% (79)

BMP3 and VAV3 Methylation 
testing

QuARTS 92% 90% (80)

RASSF2 and SFRP2 Methylation 
testing

PCR 79% 93% (79)

GSTP1, MGMT, APC, SFRP2, HLTF, ATM, 
and hMLH-1

Methylation 
testing

PCR 38- 89% 55% 
-100%

(81)

MMP7, COX-2 Expression level 
analyzing

RT-PCR 87% 65% (82)

MYBL2, MMP7, TP53 and PTGS2 Expression level 
analyzing

real-time PCR 58.3% 88.1% (83)

ITGA2, ITGA6,
PTGS2, CEACAM5

Expression level 
analyzing

real-time PCR 89% 95% (84)

ITGA6 Expression level 
analyzing

ddPCR, real-time 
PCR

*NA 96% (85)

miR-199a-3p, miR- 134, miR-17, miR-196a, 
miR-96, miR-7, miR-21, miR-92a, miR-106a, 
miR-183, miR-20a, miR214, miR-203, miR-
326, miR-16, miR-125b, miR-126, miR-320, 
miR-145, miR-146, miR-320, miR-484-5p, 
miR-146a, miR-29b, miR-127-5Pa, miR-938, 
miR-9, miR-122 , miR-138 miR-135b miR-
223 and miR-144, miR20a-5p, miR21-3p, 
and miR141

Expression level 
analyzing

qRT-PCR 50% 80% (75, 86-89)

APC: Adenomatous polyposis coli, KRAS: Kirsten rat sarcoma virus, NDRG4: NDRG Family Member 4, BMP3: Bone morphogenetic 
protein 3, TFPI2: Tissue factor pathway inhibitor 2, MGMT: Methylguanine methyltransferase, hMLH1:human mutL homolog 1, 
ddPCR: Droplet Digital PCR, SSCP: Single-strand conformational polymorphism, qPCR: quantitative polymerase chain reaction, 
SFRP1: Secreted Frizzled-related Protein 1, ATM: ataxia telangiectasia mutated, HLTF: Helicase-like transcription factor, GATA4: 
GATA Binding Protein 4, NDRG4: N-myc Downstream-Regulated Gene 4, SDC2: Syndecan 2, LTE-qMSP: linear target enrichment 
quantitative methylation-specific real-time PCR, RASSF2: Ras Association Domain Family Member 2, GSTP1: Glutathione 
Stransferase Pi, MMP7: Matrix Metallopeptidase 7, COX-2: Cyclooxygenase 2, mybl2: MYB Proto-Oncogene Like 2, PTGS2: 
Prostaglandin-Endoperoxide Synthase 2, ITGA2: Integrin alpha 2, CEACAM5: CEA Cell Adhesion Molecule 5, itga6: Integrin 
Subunit Alpha 6, NA: not available
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MSP assays) (80, 94), GATA4/5and NDRG4 (MSP 
assay), as well as methylated SDC2 biosignatures 
(linear target enrichment quantitative methylation-
specific real-time PCR (LTE-qMSP)) was approved 
in a different approach to diagnosing CRC early. It 
clearly was defined that the abnormal methylation of 
exon-1 sequences across the unexpressed vimentin 
gene (MS-PCR), BMP3, and VAV3 methylation 
(multiplex quantitative allele-specific real-time 
target and signal amplification) (78, 95-98) with 90% 
specificity can be reliable for CRC diagnosis and 
surveillance. Several main lines of data highlighted 
the practical importance of RASSF2 and SFRP2 
promoter methylation of sDNA for clinical screening 
of both precancerous adenoma and sporadic/
familial forms of CRC as well as for gastric cancer 
monitoring. Also, a panel of seven CRC-associated 
genes (GSTP1, MGMT, APC, SFRP2, HLTF, 
ATM, and hMLH-1) was evaluated at supporting 
the high sensitivity of aberrant methylated sDNA 
testing compared to COX-2 mRNA analysis (reverse 
transcription polymerase chain reaction (RT-PCR)) 
in CRC detection. The constant and trustworthy 
outcomes of the methylation-sensitive high-
resolution melting (MS-HRM) assay combined with 
emulsion PCR (emPCR) with hydrogel immobilized 
bead-array technique showed a great sensitivity and 
specificity for both sDNA-based SFRP2 and VIM 
gene methylation levels for screening of CRC (77, 
79, 81, 82, 99) (Table 2).

miRNAs Markers of CRC in Stool
miRNAs are intricate in the pathogenesis of varied 

types and subtypes of malignancies, particularly 
CRC. The opportunity of employing circulating 
or stool miRNAs as non-aggressive biomarkers 
unlocks interesting prospects for their practical 
clinical applications. Moreover, it has been proposed 
that the primary discernable tumor cells and/or 
tumor-induced molecule alterations of CRC can 
be detected in stool samples considerably more 
than in the bloodstream, signifying that stools are 
suitable specimens for early detection and screening 
approaches. A prior study announced that exosomes 
or cell-mediating coverings shield miRNAs from 
being broken down by RNAses, even in stool (100-
102). Above all, the market accessibility of potent 
high-efficiency procedures for comprehensive 
miRNA appraisal, like microarrays and easier, 
commonly convenient quantification methods to 
miRNA profiling, namely quantitative real-time 
reverse transcription PCR( qRT-PCR) (preferably 
for assessing minor miRNA panels) and NGS, which 
usually distinguishes miRNA variants, could be very 
valuable for each miRNA analysis (103). According 
to several detection rates of each miRNA, the entire 
sensitivity was 50%, and the specificity was 80% 
for diverse diagnostic miRNAs in CRC. Previous 
RT-qPCR data indicate that multiple miRNAs, 
including miR-199a-3p, miR-134, miR-17, miR-196a, 

miR-96, miR-7, miR-21, miR-92a, miR-106a, miR-
183, miR-20a, miR214, miR-203, and miR-326 had 
stool-elevated expression compared with healthy 
controls for CRC according to the Dukes’ and TNM 
carcinoma stages (104, 105). Conversely, decreased 
expression was assessed for signature miRNAs 
including miR-16, miR-125b, miR-126, miR-320, 
miR-145, miR-146, miR-320, and miR-484-5p in 
fecal specimens from patients with diagnosed CRC 
in higher stages (TNM III-IV). Also, the reduced 
expression of other stool microRNAs like miR-146a, 
miR-29b, miR-127-5Pa, miR-938, miR-9, miR-122, 
and miR-138 (real-time PCR) have been seen from 
initial to latest TNM stages of patients with colorectal 
malignancy. Fecal-based miR-135b can be utilized 
as the best marker for the recognition of CRC and 
progressed adenoma (86, 87, 105, 106). The practice 
of a two-miRNA detection panel by miR-223 and 
miR-144 (qRT-PCR) showed respectable sensitivity 
and equitable specificity for the promotion of a non-
invasive follow up method for colorectal carcinomas. 
Furthermore, findings from another study validated 
the usefulness of a large-scale study regarding 
determining the important patterns of fecal miR20a-
5p, miR21-3p, and miR141 (qRT-PCR) in the first and 
second screening of CRC after follow-ups after the 
therapeutic operation (75, 88, 89) (Table 2).

Fecal DNA and RNA-based Procedures in CRC 
Screening, Diagnostics, and Prognosis

Colorectal cancer results from an aggregation 
of genetic and epigenetic instabilities genome-
wide, especially variations in DNA methylation. 
Accordingly, specific DNA deviations that are 
abnormally methylated in colorectal malignancies 
are well-established as the best non-invasive 
molecular indicators for early CRC diagnosis (107). 
Despite its precision, colonoscopy is uncomfortable, 
invasive, and requires gut preparation. Thus, a non-
invasive and perfect new screening method such 
as the EarlyTect™ displayed good specificity and 
sensitivity for SDC2 methylation discovery in favor 
of a non-invasive screening procedure for early 
diagnosis with strong accuracy. SDC2 methylation 
had identical sensitivity for screening CRC as the 
mt-sDNA diagnostic assay (Cologuard), which 
estimates the existence of methylated TFP12, BMP3, 
NDRG4, and VIM genes, along with mutant KRAS 
and fecal hemoglobin. The sensitivity (50–92%) 
and specificity (80–100%) of SDC2 methylation for 
CRC diagnosis are reportedly high (39, 108, 109). 
Abnormal SDC2 methylation repeatedly appears 
in the earliest cancerous neoplasms, is retained in 
progressed colorectal cancer, and is not affected by 
factors like age, sex, race, and disease stage. Zhang 
et al. expressed sensitivity and specificity of 73% 
and 92% for CRC and 51% and 92% for adenoma 
about the merged individual- and complex-gene 
methylation testing of fecal DNA specimens (110). 
These findings’ reliability is debatable, so efforts 
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to unite numerous methylated genes in panels have 
been taken to enhance test reliability. However, in 
earlier research, the bearing of mutations in stool 
DNA was stated to increase novel non-invasive 
procedures for CRC initial diagnosis and screening. 
Supplemental monitoring assayed objective genes 
(p53, APC, PIK3CA, and K-ras gene mutations, long 
DNA trial, and microsatellite instability indicator 
BAT-26 deletions) in a considerably sensitive and 
numerical pathway (66, 111, 112). Consequently, the 
mean frequency of mutant DNA in fecal specimens 
did not diverge significantly through various stages 
of CRC (I, II, III, and IV), reported as 0.83%, 0.31%, 
0.20%, and 0.62%, respectively (113). 

It is recently recognize that signature assays, 
including multimarket fecal testing, will introduce as 
the best only when several biomarkers are analyzed 
together. The first study of this assay involving 
methylation of TFPI2, NDRG4, BMP3, and VIM 
genes, K-ras mutation, and DNA assessment with 
β-actin evaluation and the HemoQuant assay for 
hemoglobin reached indicative sensitivity of 78% to 
85% and specificity of 85% to 90% in case-control 
research (114, 115). It is extraordinary that this assay 
performed substantially superior in relation to the 
examination for SEPT9 DNA methylation in plasma 
(analogous to Epi proColon). Screening utilization 
of this investigation in a broad survey showed CRC 
recognition sensitivity of 92.3% at a specificity of 
86.6%, among other diagnostic DNA biomarkers (116, 
117). Specimens of blood, feces, intestinal lavage 
fluid, and colorectal mucus were further checked for 
whole and ALU-situated DNA measurement, DNA 
accuracy estimation, investigation of coding-gene 
expression, and long non-coding RNA (25). Long 
DNA was additionally assessed by testing human 
Alu duplicates, revealing a sensitivity of 44% and 
specificity of 100%. Long DNA ratios have been more 
quantified alongside iFOBT, displaying that a mixed 
strategy improved the prediction of cancer or high-
risk colonic adenoma precursors (118). None of these 
methods might supply acceptably great counts for a 
sensitive and specific screening. Cao et al. reported 
a fecal-derived methylated C9orf50 assay sensitivity 
of 95.0% and a specificity of 85.9% for detecting 
precancerous lesions and all-stage CRCs. The stool-
based methylated KCNQ5 test also demonstrated a 
high sensitivity for diagnosing premalignant injuries 
and initial phase colorectal tumors and a sensitivity 
of 77.3% for advanced phase colorectal tumors—
noticeably less than that of methylated C9orf50 
(119). Larger amounts of them are affiliated with 
the carriage of CRCs, implying that microRNA 
quantification in feces or blood specimens could 
furnish a novel indicatory style for CRC in the initial 
diagnosis and follow-up (120). Multiple released data 
from fecal specimen testing emphasized miR-21 
importance as a main diagnostic biomarker ,while 
not exhibiting remarkable sensitivity and specificity 
ratios. MiR-223 and MiR-451 observable in feces 

made a higher sensitivity and specificity in a limited 
survey (121). Other researches explored supplemental 
microRNAs including miR-106, miR-20b-5p, miR-
144 miR-135b, miR-221, miR-17-93, miR-92, miR-20 
group and miR-18 as strong CRC biosignatures (86, 
122). Although none of these miRNAs demonstrated 
sufficient prognostic quality for utilization in favor 
of a single CRC analytical exam, subsequent 
considerations are needed to improve the analytical 
quality of miRNA by explaining tumor-linked 
alterations of RNA status in fecal specimens (122). 

An anomalous expression of CD44 has been 
registered in the stools of 60 to 70% of colorectal 
subjects before surgery but in merely 10 to 30% 
of subjects following surgery. Measurement of 
cyclooxygenase 2 (COX-2) (123) mRNA exclusively 
or in association with MMP-7 mRNA has been 
evaluated for CRC diagnosis ; however, other 
researchers found COX-2 mRNA in just 50% of 
tumor cases (124, 125). A 2011 study found that cases 
with elevated stool KIAA0247 mRNA amounts had 
a meaningfully increased five-year overall survival 
rate, possibly related to the therapeutic benefit of the 
5-FU regime (126). 

Different data demonstrated that SFRP1 and SFRP2 
methylation assays, as non-invasive modalities, 
have promising accuracy for detecting CRC and 
its early development stages. Besides, NDRG4 and 
VIM could also be considered significant diagnostic 
marker genes in CRC and adenoma, respectively. 
Nonetheless, it is pretty undecidable if these 
findings, and those of various further examinations, 
reflect true dissimilarities in mRNA quantities or 
are technical artifacts produced through specimen 
reading, derivative RNA durability, or restriction of 
either the PCR reactions or the reverse transcription 
(RT) (127, 128) (Figure 1). 

Concluding Recommendations
Molecular indicators that might be applied to follow 

up or prognosticate a recurrence in a preclinical 
step of screening could have a major effect on the 
direction and, feasibly, the survivability of colorectal 
cancer cases. Multiple researchers have suggested 
using stool nucleic acid assessments as a method 
for CRC screening. The isolation of DNA and RNA 
from stool is an uncomplicated, comparatively 
noninvasive, and inexpensive method, that result in 
genetic and epigenetic alterations detection, although 
examination of gene changes is usually costly and 
time-consuming. Indeed, molecular modifications 
in malignant and primary neoplasms gathered from 
patients can alter, increasing aggressiveness and/or 
sensitivity to medications. Therefore, the potential 
of molecular surveillance changes through ordinary 
trials relies on nucleic acids extracted from feces 
specimens to be able to authorize a highly applicable 
evaluation of how behaviour of disease and 
theraupathis decisions. The findings from research 
done in this field further stress dramatic variation in 
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respect of DNA and RNA amount, output, specificity, 
and sensitivity, implying the existence of several 
pre-analytic (intricacy of specimen management, 
the presence of dynamic nucleases, the output in 
human genomic DNA, human DNA integrity, and 
existence of PCR blockers) and methodic items 
(high qualified fecal DNA quantification through 
spermidine adding, use of magnetic bead-based 
fecal miRNA Sequence via stem-loop RT and locked 
nucleic acid (LNA) primers), which would improve 
the diagnostic quality of the technique.

Furthermore, human stool RNA is a little-studied 
kind of biosignature because of the problem of 
specimen maintenance. Specimen gathering, storage, 
and processing are vitally significant considerations 
for DNA and RNA isolated from feces as they affect 
the related assays. Consequently, standardization of 
specimen gathering and evaluation is essential to ensure 
the accuracy of diagnosis or prognosis, and large, multi-
center studies are needed to delineate the exact role of 
these molecular indicators in medical practice.
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Figure 1: A schematic summary of the prevalent and powerful Stool DNA- and RNA-based biomarkers in CRC. MT-sDNA: Multi-
target stool DNA, TFPI2: Tissue factor pathway inhibitor 2, BMP3: Bone Morphogenetic Protein 3, NDRG4: NDRG Family Member 
4, VIM: Vimentin, C9orf50: Chromosome 9 Open Reading Frame 50, KCNQ5: Potassium Voltage-Gated Channel Subfamily Q 
Member 5, COX-2: Cyclooxygenase 2, MMP7: Matrix Metallopeptidase 7, DRAGO (KIAA0247): drug-activated gene overexpressed 
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