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ABSTRACT

Diet and lifestyle can greatly affect health and susceptibility to diseases. 
The nutritional needs of stem cells and their role in quantity and quality 
of stem cells is of great importance for cell renewal and healing process 
in injured tissues, because nutrients have an important role in stem 
cell physiology as many nutrient-derived metabolites released during 
the catabolic process can induce chromatin reshaping, epigenetic 
modifications and gene expression modulation. It seems that the 
maintenance of stem cell populations for tissue renewal and physiological 
restoration can be considered as one of hallmarks of health status. Based 
on the role of stem cell in tissue renewal and regeneration, establishing 
the nutrition requirements in diseases, during trauma recovery, and in 
aging process should come into consideration for establishing nutrient 
recommendations to decrease the prevalence of diseases and to advance 
the understanding of the biological pathways and mechanisms that 
connect stem cells nutrition requirements with diseases and aging.
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Introduction
Diet-related Diseases

Nutrition has been shown to be an accessible and 
potentially effective factor to improve global health 
and to decrease the rates of diet-related diseases. Diet 
can be a leading risk factor and cause of mortality 
for many diseases (1); including cardiovascular 
diseases, chronic renal failure, type II diabetes 
mellitus, inflammatory bowel disease IBD), etc. 
(2). In this context, aging has also been described 
as an independent risk factor for chronic diseases, 
including nutritional/environmental factors that can 

contribute to increased lifespan referred as “health 
span” (3). Regarding nutritional health span, in aging 
process, dysregulation of physiological systems 
and networks characteristics of chronic disease 
onset and progression happens (4), and can lead to 
a decrease in regenerative capacity of tissues via 
tissue remodeling, structure, and metabolism (5). 
Inflammation is another factor that can influence 
cellular senescence and a decline in cell number and 
function in various tissues (6). 

Also in nutritional health span, the gut microbiota 
which has a vital role has been described (7). 
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Therefore; diet, aging, inflammation and microbiota 
have important role in maintaining health, tissue 
function and regenerative capacity of mesenchymal 
stem cells (MSCs) in various tissues; as the number 
of functional MSCs is modulated by interactions 
between genetic and epigenetic factors such as 
environmental exposures, and diet (8). MSCs are 
originated from stem cell niche that is the local 
environment of MSCs, while nutritional milieu was 
shown to impact their proper quantity and quality 
for further renewal and regeneration processes (9). 
So this review has focused on MSCs’ function and 
their correlation with diet and nutritional milieu that 
can affect cell proliferation and differentiation.

Literature Selection and Screening
To describe relevant literature, a search strategy 

was developed to prepare data from PubMed, Web 
of Science, Scopus, and Scholar Google for this 
review. The search strategy included research journal 
articles, all published in English. Based on PRISMA 
principles (10). We obtained all literature mainly 
focusing on key words of diet, nutrition, function and 
mesenchymal stem cells. Only literature published 
from 2000 to 2023 were enrolled for review.

Stem Cells Definition
There are different types of stem cells including 

embryonic stem cells (ESCs), induced pluripotent 
stem cells (iPSCs) and adult or MSCs (11). ESCs 
known as totipotent stem cells make up the early 
development of human embryo about four days after 
fertilization, and formation of blastocyst, and have 
the ability to divide into any type of mature and 
fully differentiated human cells. In blastocyst, the 
outer cells form the placenta and other accessory 
pregnancy tissues, while the inner cell mass called 
pluripotent stem cells can develop into any other cell 
type, but their disadvantage as tumorogenic potential 
has limited their use in regenerative medicine (12). 

The iPSCs are embryonic-like and pluripotent 
that are generated from somatic cells that have 
been reprogrammed by the ectopic expression of 
defined embryonic transcription factors and are 
widely used in therapeutics for disease modeling, 
regenerative medicine, and drug discovery. They 
can be unlimited source of any type of human cell 
needed for therapeutic purposes in regenerative 
medicine, but the main concern and limitation in 
generation of iPSCs in regenerative medicine is their 
association with cancer (13).

Mesenchymal Stem Cells (MSCs)
MSCs divide mitotically, where one of its 

daughter cells remains a stem cell; yet the other one 

differentiates into a mature specialized cell and are 
not very numerous and only small numbers can be 
found in mature organs and tissues in stem cell niche 
(14). Since the discovery of MSCs as fibroblast-like 
cells within the bone marrow (BM) in 1966 (15), 
they have been isolated from other adult tissues 
including adipose tissue (16), endometrium (17), 
dental pulp (18), Wharton’s jelly (19), and intestine 
(20); even bone-marrow-derived MSCs (BMSCs) 
are still considered a gold standard among MSCs in 
regenerative medicine (21). 

Among MSCs, intestinal stem cells (ISCs) 
have a pivotal role in nutritional milieu. They are 
located at the crypts away from the intestinal content, 
whereas differentiated gut cells populate the villi, 
which directly contact the intestinal lumen. They 
are the cellular source of all mature cell types of the 
intestinal epithelium during adult life (22). ISCs in 
intestine are in adjacent to an array of functionally 
differentiated cells such as enterocytes, Paneth 
and goblet cells. These cells reside the intestinal 
epithelium and have a vital role in nutritional milieu. 
Paneth cells reside at the base of the intestinal crypts 
and lie in neighborhood to the ISCs, while their 
main function is to produce, package and export 
a variety of antimicrobial proteins and peptides 
including α-defensins, angiogenin-4, lysozyme 
and secretory phospholipase A2. Adjacent to them, 
goblet cells are present throughout the intestine and 
produce the protective mucus blanket by synthesizing 
and secreting high-molecular-weight glycoproteins 
known as mucins (23). 

ISCs act as gut regenerative machinery that 
divide continually to replace their own population 
and to produce the differentiated epithelial subtypes. 
The nutritional status can affect production of 
enterocytes, secretory lineages such as Paneth cells 
and ISCs (24). Fasting and specific dietary exposures 
were demonstrated to decrease ISC population and 
function and the Paneth cells too (24). ISCs have 
been described to possess two populations named 
Lgr5+ and 4+ that are responsible for routine cell 
renewal and tissue regeneration, respectively. The 4+ 
ISCs are quiescent and can be mobilized in response 
to injury (25). An optimal food intake can regulate 
and activate ISCs’ symmetric divisions (26). 

Mesenchymal Stem Cells Characteristics
MSCs have unlimited proliferation capacity and 

multilineage differentiation properties (27). The 
International Society for Cell Therapy has described 
a minimal criteria for MSCs to be multipotent such 
as i) to be substrate/plastic adherent in cell culture 
plates (28); ii) to possess specific phenotype with 
positive expression of some markers as CD73, 
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CD90, and CD105, and at the same time negative 
expression of some markers as CD11b, CD14, CD34, 
CD45, CD79a, and human leucocyte antigen DR 
HLA-DR) (29); iii) and the ability to differentiate 
into adipocytes, chondrocytes, and osteocytes (30). 

Their ability to differentiate into one or more types 
of mature cells is called “developmental plasticity”, 
and various stem cells have different degrees of 
potency. They can be easily isolated and expanded 
in vitro, and have low immunogenicity making 
them an ideal candidate for cell transplantation in 
the field of regenerative medicine (31). MSCs can 
support tissue regeneration under both physiologic 
and pathologic conditions. They participate in 
tissue homeostasis, in a dynamic and specialized 
microenvironment with a distinct design as stem 
cells niche. These cells are immune-modulating 
because of the low expression of CD40, CD80, 
CD86, major histocompatibility complex I MHC 
I), and the lack of MHC II expression (32). 

Their immune-modulating function is via 
interacting with immune cells such as dendritic 
cells DCs), T and B cells, neutrophils, natural killer 
cells NKs), and macrophages as well as powerful 
paracrine actions (33). They can be easily labeled 
and tracked by non-invasive methods such as MRI 
and can be a drug carrier (34). MSCs have been used 
in tissue engineering too (35). They have an active 
component of paracrine secretion as exosomes or 
extracellular vesicles (EVs) that have been utilized in 
treatment of many diseases (36). Exosomes can cross 
the blood-brain barrier BBB) to enter the CNS and 
to be employed in treatment of brain diseases (37). 
MSCs naturally package MicroRNAs (miRNAs) into 
exosomes and can be potentially employed to package 
exogenous therapeutic miRNAs; while miRNAs are 
non-coding RNAs that play an important role in gene 
regulation (38). 

Mesenchymal Stem Cells and Health
MSCs were shown to have an important 

role in maintaining health and tissue function 
throughout the lifespan based on their regenerative 
capacity in various tissues (39). They have multi-
differentiative potential to create the needed cell 
types for replacement of all cells that comprise the 
organ where they reside, their dynamic balance for 
cell proliferation, self-renewal, and differentiation 
to provide the immediate needs for tissue growth 
and function, and repair throughout the lifespan 
has a vital role (40). The number of functional 
MSCs was shown to be modulated by interactions 
between genetic and epigenetic factors including 
environmental exposures, and diet exercise (41). So 
the nutritional needs of stem cells for cell renewal 

and healing process in injured tissues and the role 
of a diet in quantity and quality of stem cells is of 
great importance (42), even aging can lead to a 
depletion of MSC populations referred to stem cell 
exhaustion that can limit the ability of stem cells to 
replenish injured tissues and to maintain essential 
physiological functions via a decline in the capacity 
of cell self-renewal and differentiation (43). 

MSCs in proper quantity and quality have been 
successfully utilized in treatment of several acute 
and chronic diseases for structural and functional 
restoration of injured tissues (44). Their function and 
plasticity were illustrated to be closely associated 
with inflammation (45) by secretion of inflammatory 
cytokines such as IL-1, IL-6, and TNF-α (46), and in 
response to bacterial lipopolysaccharides (LPS) (46). 
In pathophysiological conditions such as obesity, their 
proliferation and differentiation are impacted by pro-
inflammatory cytokines (47) and contribute to obesity-
associated inflammation and metabolic disorders (48). 
They are also involved in pathogenesis, development, 
progression and metastasis of cancer through the 
secretion of cytokines and chemokines (49).

Mesenchymal Stem Cells and Nutrition
Diet and lifestyle are important factors to affect 

health and susceptibility to diseases. They impact 
the quantity and quality of available stem cells in 
the stem cell niche for renewal, regeneration and 
physiological restoration as hallmarks of health 
(9). Deficits in the nutritional milieu can alter stem 
cell niche and/or the interaction of stem cells with 
the niche and lead to age-related modifications 
for stem cell proliferation and function. As stem 
cells have unique metabolism, their nutrient needs 
and in differentiated cells are of great importance. 
Therefore, understanding the nutritional needs of 
stem cells during life span, including the role of 
nutrition in extending biological age by blunting 
biological systems decay is fundamental to establish 
food and nutrient guidance to decrease prevalence 
of diseases and to maintain the overall health (9).

MSCs as the progenitors for tissues were 
illustrated to be highly pertinent for childhood 
obesity and metabolic disease risk of adipose and 
skeletal muscle (50). In this context, nutrients may 
directly or indirectly affect stem cells by regulating 
the stem cell niche non-autonomously. Nutrients 
also regulate hormone production, which in turn 
can impact the stem cell behavior and their niche. 
In response to these stimuli, stem cells activate 
signaling pathways, reprogram their metabolism 
and gene expression, and convert the dietary input 
into fate decisions. Stem cell characteristics that 
are regulated by nutrients are balanced symmetric/
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asymmetric divisions, gene expression, genome 
and epigenome integrity, autophagy, metabolism, 
oxidative status, self-renewal, differentiation, and 
exhaustion. Stem cells adapt their proliferation to 
nutrients and available growth factors in order to 
conduct cell division when there are enough nutrients. 
Mechanistically, this tight balance is dependent on 
“master regulators”, such as mTORC1, which can 
sense nutrients and regulate both metabolism and 
stem cell fate (51). 

On the other hand, intracellular metabolites, such 
as acetyl-CoA can regulate both metabolic pathways 
and epigenetic processes, and then connecting diet 
and metabolism with stem cell functions (52). 
This connection is specifically relevant in fate 
determination for various stem cells, while stem cell 
self-renewal can be achieved by modifying calories 
or nutrients (53). So stem cells are among the main 
players in orchestrating the response of the body 
to nutrients, mainly due to their key role in tissue 
homeostasis and contribution to health maintenance 
(54), because stem cells not only use nutrients for 
their metabolic needs; but also adapt their functions, 
such as self-renewal, autophagy, or differentiation. 
It seems that the metabolic environment, nutrient 
availability and diet-induced metabolic alterations 
affect stem cell fate, lineage specification and 
differentiation (55). 

In this relation, nutrients are important in stem 
cell physiology due to the ability of several nutrient-
derived metabolites released during the catabolic 
process to induce chromatin reshaping, epigenetic 
modifications and gene expression modulation 
(56), and the molecular pathways responsible for 
sensing nutrient availability control key functions 
of protein synthesis, self-renewal, autophagy, and 
differentiation (57). The influence of diet on stem 
cells can become more dramatic because stem cells 
have unique metabolic needs which change based 
on the developmental stage of stem cells (58). The 
activation of metabolic pathways is necessary for 
specific activities of stem cells, producing more 
profound nutrient dependencies in comparison to 
differentiated cells (59). Stem cells when compared 
to differentiated cells had lower levels of reactive 
oxygen species (ROS); while ROS accumulation 
and the total intracellular oxidation state were 
greatly impacted by diet and nutrients. They were 
considered pivotal regulators of the balance between 
self-renewal and differentiation (60).

Mesenchymal Stem Cells and Amino Acids
Amino acids (AAs) are involved in self-renewal, 

maintenance of pluripotency and differentiation 
ability of stem cells (61). Several essential AAs 

(EAAs) have been mentioned to be necessary for 
the maintenance of MSCs (62); and their abundance 
was exhibited to increase proliferation, without 
affecting the stemness (63). It was shown that MSCs 
significantly increased after receiving essential 
amino acids (EAA’s) versus placebo at 24-h. It was 
shown that the Mammalian Target of Rapamycin 
Complex 1 (mTORC1) is a primary nutrient sensor 
in the intestine acting as an important regulator of 
protein synthesis and growth, affecting stem cell 
proliferation and autophagy in the intestine (64). 

Restriction of dietary protein and amino acids has 
been shown to affect stem cell fate. E.g. methionine 
deficiency can decrease proliferation of ISCs (65). 
In Drosophila, the depletion in EAA’s, methionine, 
and the methionine derived S-adenosyl methionine 
was found to decrease midgut mitosis in ISCs by 
controlling protein synthesis and by induction of the 
Jak/STAT ligand Unpaired 3 (Upd3) (66). Induction 
of the JNK pathway increases in ISCs differentiation, 
whereas ISC proliferation remain unchanged, despite 
the downregulation of Jak/STAT pathway (67). So 
methionine was exhibited to act as a regulator of cell 
proliferation (68). 

The role of leucine to promote myoblast 
proliferation and differentiation through an mTORC1-
MyoD cascade has been described (69). The mTOR 
has a key role in diverse cellular processes including 
cell growth, differentiation, and protein synthesis 
through its role in regulating the expression of 
specific genes (70). Arginine was reported to have 
a critical role in proliferation and renewal of ISCs 
and tissue regeneration (71). Glutamine apart from 
glucose has been the second most consumed nutrient 
during the proliferation phase of myoblasts (72), 
suggesting their important role in cell proliferation 
(73). Diet supplementation with conditionally EAA’s 
glutamine resulted in activation of ISCs, including 
a rise in total intestinal cell number (74). Dietary 
glutamate stimulate ISC proliferation and growth 
through calcium signaling (75).  

Mesenchymal Stem Cells and Fatty Acids
Fatty acids (FAs) are another group of nutrient-

derived molecules that are important for stem cell 
physiology confirmed by presence of a specific 
lipidome signature in MSCs, playing a primary 
role in quiescence and self-renewal, symmetric-
asymmetric division, differentiation, cell-niche 
interaction and cell fate determination of MSCs 
(76). High-fat diet (HFD) can induce alterations in 
intestinal structure and function (77), via changes 
in control of ISC activity. It was shown that specific 
fatty acids, including palmitic acid and oleic 
acid, directly interact with the ISCs and induce 
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peroxisome proliferator-activated receptor delta 
(PPAR-δ) specifically in ISCs and progenitor cells 
to enhance their stemness (78). 

It is necessary to mention that in stem cells, a 
well-balanced combination of FA synthesis (FAS) 
and FA oxidation (FAO) is indispensable, and 
inhibition of one or the other can result in stem 
cell exhaustion (76). High-fat diets increase ISC 
proliferation, and self-renewal, while decreasing 
Paneth cell number and lead to a rise in the risk of 
intestinal hyperplasia (64). In mice fed a high fat 
western-style diet, it was shown that transcriptional 
reprogramming happens in both Lgr5+ and 4+ ISCs 
populations, with stem cell mutation and nutrient-
driven alterations in stem cell populations that 
are in consistent with a carcinogenesis event (79). 
Mechanistically, HFD-induced stress leads to JNK 
pathway activation, secretion of Upd3 ligand and 
activation of ISC proliferation through the Jak/STAT 
signaling pathway (80). 

In Drosophila, microbiota-derived short chain 
fatty acids (SCFAs) were demonstrated to regulate 
lipid and carbohydrate metabolism to maintain ISCs 
(81). Epithelial injury causing exposure of crypt ISCs 
to butyrate suppresses ISC proliferation and mucosal 
wound healing via Foxo3 regulation. In Drosophila, 
high cholesterol diets were presented to alter ISC cell 
differentiation by modulating the Delta ligand and 
Notch stability in the endoplasmic reticulum (77). An 
association between MSCs fat content with adiposity 
and metabolic health was prospectively shown. Fetal 
MSCs were demonstrated to be progenitors for 
mesodermal tissues, including adipose and skeletal 
muscle and these MSCs when exposed to obesity in 
utero were illustrated to have more in vitro potential 
for adipogenic differentiation and higher fat content. 
The fat content of MSCs undergoing adipogenesis in 
vivo was also reported to have positive correlation 
with neonatal adiposity (50). 

Mesenchymal Stem Cells and Phytochemicals
Another group of nutrients that have a vital 

role in stem cell physiology are phytochemicals 
for their beneficial impact on human health based 
on their fundamental roles in cell signaling, 
cell cycle regulation, oxidative stress response, 
inflammation, and many other processes (82). Among 
phytochemicals, polyphenols were illustrated to 
modulate the behavior of stem cells, either directly 
or indirectly, by regulating the microenvironmental 
niche, suppressing hydrogen peroxide-induced 
oxidative stress (83) and inducing osteogenic 
differentiation (84). 

Vitamin A derived from carotenoids as the most 
important phytochemical is a potent genetic and 

epigenetic modulator of stem cell self-renewal and 
differentiation (85). It participates in hematopoiesis 
(86), and contribute in dormancy of hematopoietic 
stem cell (87). It can modulate antioxidant and anti-
inflammatory pathways by regulating key effectors, 
such as SIRT1, Wnt, NF-kappa B and Nrf2 (88). 
Biotin (Vitamin B7) sodium multivitamin transporter 
(Smvt) was shown to be specifically expressed in ISCs, 
highlighting the metabolic requirements of ISCs for 
this vitamin (89). In a recent study, biotin transported 
to the ISCs via Smvt was found to be necessary for 
mitosis and physiological intestinal cell differentiation, 
in a process parallel to the Jak/STAT pathway. 
Furthermore, ISC-specific Smvt silencing leads to 
dysbiosis caused by increased load of the opportunistic 
pathogen Providencia sneebia. Strikingly, in biotin-
scarce conditions, microbiota-produced biotin could 
directly induce ISC mitosis (90). 

Mesenchymal Stem Cells and Minerals
Early-life abnormal dietary calcium intake 

might program the adipogenic differentiation ability 
of MSCs from male offspring, with significant 
expressions on the Wnt/β-catenin signaling pathway 
to aggravate high-fat-diet-induced obesity in 
adulthood (91). This adipogenic differentiation can 
be regulated by coordination of complex networks 
in several signaling pathways, including JAK2/
STAT3, SIRT1/SIRT2, ERK1/ERK2, TGF-β/
BMP, Wnt/β-catenin and RHO-family GTPase 
(92), while activation of Wnt/β-catenin signaling 
can further inhibit adipogenic differentiation 
and promote osteogenic differentiation through 
endogenous regulatory genes such as CTNNB1, 
Wnt1, Wnt10a, Wnt10b, Wnt5a, Gsk3β, Axin2 
and TGF7L2 (93). This differentiation potential 
was significantly declined with the age (93), so the 
nutritional status and exposure to adverse factors 
during pregnancy and lactation have important role 
in differentiation potential of MSCs to affect later 
metabolic disturbances in adulthood (94). The Ca2+ 
formed in the culture medium was shown to have 
osteo-inductive properties to promote osteogenic 
differentiation of MSCs (95).

Mesenchymal Stem Cells and Energy
It was reported that alterations in energy 

sources through glycolysis, the tricarboxylic acid 
cycle, in addition to accompanying changes in ROS 
generation can impact stem cell differentiation (96). 
ISCs were demonstrated to have robust responses 
to energy intake including caloric restriction, 
fasting and various energy sources derived from 
ketogenic, high-fat, or high-carbohydrate diets (25). 
In this context, energy has been described as the 
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Lkb1/AMPK activated kinase pathway to act as a 
metabolic checkpoint and master regulator of stem 
cell proliferation and fate. This pathway is activated 
when ATP is decreased and cell growth is terminated 
leading to suppression of mTORC1 signaling. So the 
complex relationship between mTORC1 and LKB1-
AMPK activity can impact on SC proliferation, 
apoptosis, and self-renewal (64), because LKB1-
AMPK signaling affect Sirt1 and is stimulated by 
caloric restriction, fasting, and exercise, that can 
simulate the expansion of the intestinal stem cells 
and increase the capacity for tissue repair and 
regeneration (97). 

Sirt1 by impacting nicotinamide adenine 
dinucleotide+ (NAD+) acts as a NAD-dependent 
histone and nonhistone protein deacetylase and 
regulates gene expression, and cell proliferation, 
metabolism, and differentiation. As Sirt1 level 
decreases with age and rescued by dietary NAD, it 
can influence the SC quantity (98). Ketogenic diets 
mimic low-caloric states via enhancing stem cell 
self-renewal and tissue regeneration and dampening 
the progressive loss of tissue function during aging; 
while diets with high carbohydrate levels have 
opposing effects (99). The intracrine ketone bodies 
can define the fate for intestinal stem cells and play 
the role as mediators of the pro-regenerative effects 
of fasting. High-carbohydrate diets were shown to 
suppress formation of ketone bodies and impair 
function, self-renewal, stemness, regenerative 
capacity and epithelial homoeostasis of ISCs via 
promoting formation of Paneth and goblet cells at 
the expense of formation of enterocytes (99). 

ISCs sense and respond differently to dietary 
energy sources and macronutrients. Ketogenic 
diets can improve intestinal health as the increased 
generation of ketone bodies impact Lgr5+ stem 
cells function and intestinal epithelial homeostasis. 
Inhibition in formation of ketone bodies in Lgr5+ 
cells can weaken stemness by enhancing formation 
of goblet and Paneth cells. It is now known that 
release of Wnt ligands and stem cell growth factors 
by Paneth cells can protect epithelial homeostasis 
(99). Dietary supplementation with N-acetyl-D-
glucosamine (GlcNAc) was reported to be enough to 
maintain ISC proliferation during caloric restriction 
independent of food intake (98). High-sugar diets can 
induce alterations in intestinal structure and function 
and ISCs (82), via changes in control of ISC activity. 

Mesenchymal Stem Cells and Microbiota
In nutritional health span, the gut microbiota was 

demonstrated to have a vital role (7). A complex 
interplay has been displayed between microbiota, 
diet and the intestine controlling host health and 

the stem cell niche. The microbiota affects directly 
on intestinal activity and their stem cell niche 
through its contribution to energy harvest and 
storage, and micronutrient synthesis, including 
vitamins that the host body cannot produce, enhance 
fermentation-mediated digestive efficiency and 
absorb undigested nutrients. It was shown that gut 
microbiota stimulates ISCs function and participates 
in homeostasis maintenance of stem cells (23). 
ISCs have a pivotal role in epithelial renewal and 
turnover, proliferation to maintain a steady stem cell 
population and differentiation to produce functional 
epithelial cell types. This happens in an elaborate 
micro-environment via a myriad of host and gut 
microbiota-derived signals, forming an intestinal 
stem cell niche (100). 

Conclusion
Diet and lifestyle can greatly affect health and 
susceptibility to diseases. The nutritional needs of 
stem cells and their role in quantity and quality of 
stem cells is of great importance for cell renewal 
and healing process in injured tissues, because 
nutrients have an important role in stem cell 
physiology as many nutrient-derived metabolites 
released during the catabolic process can induce 
chromatin reshaping, epigenetic modifications 
and gene expression modulation. It seems that the 
maintenance of stem cell populations for tissue 
renewal and physiological restoration can be 
considered as one of hallmarks of health status. 
Based on the role of stem cell in tissue renewal 
and regeneration, establishing the nutrition 
requirements in diseases, during trauma recovery, 
and in aging process should come into consideration 
for establishing nutrient recommendations to 
decrease the prevalence of diseases and to advance 
the understanding of the biological pathways and 
mechanisms that connect stem cells nutrition 
requirements with diseases and aging.
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