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Introduction

Biomedical signals are continuous and sophisticated with some 
artifacts. Signal processing techniques are used to obtain use-
ful information from various biomedical signals for analysis, 

design, or diagnosis [1]. Biomedical engineering designed Biosignals, 
bioelectrical, and biomechanical systems, while physicians and health-
care specialists used biomedical signals for detecting health problems. 
Researcher functioning on biomedical applications can process the bio-
signals according to their medical applications by different signal pro-
cessing techniques [2,3]. 

In this paper, two of the most important neuroscience functional data 
Electroencephalography (EEG) and functional Magnetic Resonance 
Imaging (fMRI) are analyzed with Independent Component Analysis 
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Objective: In this study, two of the significant functional brain techniques are 
introduced as a model for neuroscience data analysis.
Material and Methods: In this experimental and analytical study, Electro-
encephalography (EEG) signal and functional Magnetic Resonance Imaging (fMRI) 
were analyzed and managed by the developed tool. The introduced package combines 
Independent Component Analysis (ICA) to recognize significant dimensions of the 
data in neuroscience. This study combines EEG and fMRI in the same package for 
analysis and comparison results. 
Results: The findings of this study indicated the performance of the ICA, which 
can be dealt with the presented easy-to-use and learn intuitive toolbox. The user can 
deal with EEG and fMRI data in the same module. Thus, all outputs were analyzed 
and compared at the same time; the users can then import the neurofunctional datasets 
easily and select the desired portions of the functional biosignal for further processing 
using the ICA method.  
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search centers.
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(ICA). The EEG signal involves several corre-
lated signals from different places on the scalp 
that translates the electrical activity of the 
brain [4,5]. The neural activity and related he-
modynamic response function (HRF) can be 
detected in the brain by calculating the Blood 
Oxygenation Level-dependent (BOLD) signal 
[6]. The fMRI images are represented by a 4D 
dataset, which are sequences of 3D images ob-
tained over time [7,8].

The ICA is a standard method, recently used 
to analyze data in brain computing interfaces 
by extracting clean signals from signal blends 
with artifacts [9] without any changes to the 
data, i.e., it doesn’t add any further informa-
tion to the signal. Additionally, the ICA is 
commonly denoted as the Blind Source Sepa-
ration algorithm. The signals extracted by the 
ICA are described by the time course (TC) 
representing the evolution of neural activity 
over time. The output signal of the functional 
neural activity is the independent component 
(IC), which is statistically independent of any 
other signal [10].

The EEG signal is the weighted sum of brain 
activity depending on the signal path from the 
neuron cell to the electrodes. The recorded 
neuron potential from more than one elec-
trode may be the same value; thus, the output 
signal is extremely correlated to the recorded 
neuron. The ICA is a mathematical method, 
leading to separating the EEG signals into 
mutually independent components of the scalp 
maps [11]. Sun et al. trained the ICA on real 
EEG signals and identified the independent 
sources statistically. The experimental results 
showed that the ICA approach had the ability 
for analyzing multichannel EEG by remov-
ing the artifacts and separating the mixed sig-
nals significantly [12]. Winkler et al. used real 
data to train the projected automatic method 
for signal component classification. The EEG 
signal components may be artificially split by 
an ICA method due to the big dimensionality 
of the data. Winkler et al. concluded that the 
proposed method worked as a good classifier 

of the ICA components and removed the ar-
tifacts from EEG data efficiently [13]. Rejer 
and Gorski proved the benefits of applying 
ICA in rearranging the true brain sources and 
artifacts in some components as new mixtures 
[14], fast ICA deflation approach [15], and In-
fomax [16]. The results showed that all ICA 
algorithms improved the signal-to-noise ratio 
significantly [17].

The ICA can extract the task paradigm of 
the fMRI study that this task activation map 
is designed to capture the activity of the 
brain through a time series of the experiment  
[18-20]. Moritz et al. processed a real dataset 
from 10 individuals with the ICA of multislice 
fMRI data to study temporal and spatial char-
acteristics of brain activation. The individu-
als were asked to perform the finger-tapping 
paradigm to map the sensorimotor cortex. The 
results showed the ICA method with informa-
tion on the temporal configuration and spatial 
localization of the components [21]. Calhoun 
et al. proposed a new model for complex-
valued fMRI datasets using ICA. They also 
showed an improved capability for separating 
the task-related activated functional variations 
with many activities of the functional voxel 
[22]. Bi et al. introduced a post-nonlinear ICA 
grouping of source signals, which is most ap-
propriate for the mixed signals of the brain, 
and used real data from 38 and 32 mild cog-
nitive impairment unhealthy and healthy indi-
viduals in resting-state networks, respectively. 
Further, they proved that the functional con-
nectivity of resting-state networks in mild 
cognitive deficiency individuals was abnormal 
concerning the healthy individuals [23].

For neuroscience and especially functional 
neuroscience data, there are some software 
packages designed for processing and analyz-
ing signals. However, they are sophisticated 
and need an expanse of time to learn about 
using these toolboxes by the physicians or 
healthcare specialists who work in this field. 
No package introduced the output results of 
two of the essential neurofunctional signals 
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Electroencephalogram (EEG), functional 
Magnetic Resonance Imaging (fMRI), and the 
Independent Component Analysis (ICA) tech-
nique in the same module. To the best of our 
knowledge, the presented tool is the first study 
in the literature in this field.

Many Graphical User Interface (GUI) soft-
ware packages are presented for analysis and 
learning tasks in neurofunctional data analysis 
[24-27]. Delorme and Makeig developed En-
cephalography and local field potentials Anal-
ysis (EEGLAB, which is a MATLAB-based 
GUI package [28] to analyze EEG data for 
both ordinary and advanced EEG processing. 
The Electro and MagnetoEncephalography 
Lab (ELAN), as an advanced GUI tool, was 
developed by a group of scientists [29], pictur-
ing the topographical activation records based 
on EEG, Magneto Encephalogram (MEG), 
and local field potentials (LFP) signals.

The proposed tool was implemented for the 
non-invasive, electrophysiological EEG, and 
neuroimaging fMRI techniques, which are 
the major in detecting functional brain activ-
ity. This study is designed as a simple toolbox 
constructed on GUI via MATLAB. In this 
package, the functional data through low spa-
tial resolution and high temporal resolution 
(represented in EEG) and the data through 
high spatial resolution and comparatively 
weak temporal resolution (described in fMRI) 
are designed on the same GUI page. The soft-
ware package is more flexible and easier com-
pared to the other analogous packages.

Material and Methods
This experimental and analytical study aimed 

to present a simple toolbox for Neurofunc-
tional Data Analysis with the ICA algorithm. 
Many analysis techniques were designed and 
implemented for essential analysis packages 
in different types of functional neuroscience 
data [4,30]; however, these tools were compli-
cated and inflexible in use. Also, they lacked 
in using the same analysis method with the 
neurofunctional dataset for a better compari-

son. The designed tool introduced the view 
and comparison in the same module, which is 
a very useful analysis and preferred by a lot 
of researchers in the functional neuroscience 
field.

Figure 1 summarizes the model of the de-
signed package with a simple flow graph. The 
central part of the modeling design is based 
on the ICA techniques for both the EEG and 
fMRI raw data. The ICA was practical to bio-
signals [4]. In the EEG, the ICA was used to 
evaluate the principal sources in a multi-lead 
EEG waveform; while in fMRI, ICA was used 

Figure 1: The flowchart of the designed func-
tional neuroscience data analysis tool
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to develop the recognition of active neural ar-
eas in the brain [30]. 

In the environment of EEG and fMRI data, 
the extracted components are purely statisti-
cal properties and examined based on their 
time course. The ICA can produce a modi-
fied signal mixture after removing the com-
ponents showing artifacts and other non-brain  
processes [10].

Preprocessing steps must be done before ap-
plying the ICA algorithm to the neurofunction-
al data. The preprocessing includes “cleaning 
up” the data and throwing the artifact sources 
before the subsequent processing and analysis 
algorithms. 

The EEG preprocessing steps must be done, 
in which many waveforms are picked up above 
the area of the scalp, while these different 
small waveforms are the product of a smaller 
number of neural sources. In this situation, 
the aim is not only to decrease the number of 
waveforms but also to produce more signifi-
cant signals, in which various waveforms are 
acquired from electrodes located around the 
cortex. As a result, the EEG signals signify the 
grouping of principal neural sources.

Due to the difficulty in fMRI acquisition and 
a low Signal Noise Ratio (SNR) connected 

with the BOLD signals, a preprocessing stage 
is needed for fMRI raw data. For preprocess-
ing and analysis of fMRI data, some software 
tools are accessible that some of them are 
open sources, such as Statistical Parametric 
Mapping (SPM), Functional Magnetic Reso-
nance Imaging of the Brain (FMRIB) software 
library (FSL), and analysis of functional neu-
roimages (AFNI). SPM [31] and FSL [32] are 
the most popular two packages. 

The SPM is an open-source package in 
MATLAB, selected for the designed toolbox. 
The presented work used the SPM in the de-
signed tool for pre-processing fMRI data.

The fMRI dataset must be preprocessed be-
fore fMRI data analysis using the ICA tech-
nique. The preprocessing stages are needed 
for eliminating unwanted noises or data from 
the dataset, improving the fMRI mapping, and 
arranging it for analysis.

In the proposed design, the fMRI dataset was 
preprocessed using the following steps: 1) re-
alignment, 2) co-registration, 3) segmentation, 
4) normalization, and 5) smoothing (Figure 1).

The essential package used with the prepro-
cessing steps was shown in the SPM menu 
window in Figure 2.

The ICA algorithm can be consequently ap-

Figure 2: Statistical Parametric Mapping (SPM) main windows for the designed model.
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plied after the preprocessing steps for both 
EEG and fMRI signals. The ICA aimed to 
convert the waveforms into some variables, 
which are statistically independent and non-
gaussian. The ICA can catch noise sources, 
and these (components), i.e. converting mixed 
signals to independent components can be 
withdrawn from the waveform [2,3].

The features provided by the proposed  
visual package are as follows: 

• FMRI: 
a) Preparing fMRI data: converting DICOM 

file format [33] to ANALYZE [34] or Neu-
roimaging Informatics Technology Initiative 
(NIFTI) file format [35] for the preprocessing 
steps. 

b) Preprocessing and fMRI data analysis: 
calling the SPM tool within the designed 
package.

c) Dealing with the ICA algorithm. 
d) Showing fMRI data: displaying fMRI 

brain images slice by slice, in which any num-
ber of fMRI slices can be directly selected 
from the pop-up menu. 

• EEG: 
a) Loading EEG data.
b) Dealing with the ICA.
c) Monitoring EEG dataset.
d) Saving the EEG graph after processing it 

with the ICA for further analysis and under-
standing.

Results
Two of the primary functional data, EEG 

and fMRI presented in the same GUI module 
(Figure 3). Screen capture of a module user 
session was designed as a simple toolbox run-
ning under GUI using MATLAB.

In the presented design, EEG data were pre-
processed by removing the artifacts, filtering, 
epoch selection, and averaging. Ensemble av-
eraging is a simple and powerful signal pro-

Figure 3: Screen capture of the designed tool running under MATLAB-based Graphical User 
Interface (GUI).
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cessing method for decreasing artifacts when 
various observations of the signal are possible 
due to sensors or repeated stimuli of the same 
stimulus. In ensemble averaging, a group, or 
ensemble, of time responses is averaged to-
gether on a point-by-point basis that is an av-
erage signal constructed by taking the aver-
age, for each point in time, overall signals in 
the ensemble. Figure 4a shows the raw EEG 
waveform with a visual response presenting 
a small neural signal surrounded by the EEG. 
Figure 4b shows the visual evoked response 
(VER), which cannot be identified in the EEG 
waveform without averaging hundreds of in-

dividual responses of the EEG signal.
Different types of artifacts are associated 

with the EEG signal. A bandpass filter was 
used to remove lower and upper undesirable 
frequencies. Figure 5 shows an example of the 
bandpass filter on raw EEG signal, and the fil-
ter range was designed with (6 Hz) low and 
(12 Hz) high cutoff frequencies.

Two types of free datasets (one for EEG and 
the other for fMRI) were used in this study. 
The EEG signal was acquired from the Physi-
oNet data bank (2002). The presented toolbox 
had features of reading EEG data, experience 
information, and channel situation file in many 

Figure 4: The effect of ensemble averaging on raw Electroencephalography (EEG) waveform. (a) 
raw EEG, (b) clear visual response. 

Figure 5: Bandpass filtered Electroencephalography (EEG) signal.
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altered formats. 
In this experiment, the free auditory fMRI 

dataset involves whole-brain BOLD/ Echo 
Planar Imaging (EPI) on an adjusted 2-tesla 
Siemens MAGNETOM vision system [36]. 
The experimental paradigm was alternated be-
tween two states as auditory stimulation “si-
lence” and “talk”. When the raw fMRI data 
were successfully loaded, a new ‘info’ module 
was performed as seen in Figure 6. The ‘info’ 
module comprised the specifics of fMRI data:

• The dimension of data: the dimensionality 
of the data in X, Y, and Z dimensions as well 
as the whole number of fMRI slices designat-
ed as the whole brain.

• The total number of voxels: the whole num-
ber of voxels of the designated fMRI dataset.

• Analyzed voxels: the number of evaluating 
voxels after applying the threshold value.

Figure 7 shows a screen capture of the ICA 
user session for the fMRI dataset running un-
der MATLAB. In fMRI, the ICA can exam-
ine for components associated with artifacts 
or blood flow dynamics. Thus, regions of in-
terest (ROI) were first recognized. The sepa-
rated data was reformatted as one dimension 
by stringing the image rows, or columns, from 
each slice.

The resultant data from each slice were orga-
nized as a single vector. The ICA was applied 
to the rearranged ensemble of slice vectors. 

Therefore, each pixel was considered a differ-
ent source, and each slice was an observation 
of that source. 

If there are different intensity pixels in a 
non-random manner, this outputs one or more 
components in the analysis. The variable that 
records, such as the paradigm, is then used as 
a further accurate estimate of blood flow he-
modynamics in the correlation analysis. The 
separated variable was used to assess the place 
of the paradigm. 

Figure 7 shows the first three variables (com-
ponents) from an independent component 
analysis applied to the ROI in Figure 3 repre-
senting the blood flow hemodynamics. A func-
tion was analogous to the paradigm shown in 
the first pattern. The second and third patterns 
show the artifacts, related to head motion or 
respiration.

Neurofunctional Tool Assessment 
The neurofunctional tool was examined for 

validity and educational contributions and in-
troduced to biomedical students and research-
ers as an efficient educational tool. The pre-
sented toolbox was evaluated at Al-Nahrain 
University, in which nearly 40 researchers and 
students were in the biomedical engineering 
department in both graduate and postgraduate 
studies. 

The neurofunctional system was developed 

Figure 6: Example of the “info” window.
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with an automatic window, including the eval-
uation form (Figure 8). The evaluation form 
included eight questions related to the efficien-
cy and flexibility of the designed system. Five 
points (excellent=5, very good=4, good=3, 
fair=2, and very poor=1) were used as a scale 
to reflect how the participants evaluated this 
work. The statistical test answers were shown 
as the output results in Figure 9.

Discussion
The designed tool proposed a user-friendly 

graphical interface dealing with two of the 
most important functional signals, EEG, and 
fMRI. The ICA was modeled for the usage in 
the same package as the traditional biosignals 
analysis method. 

All the presented packages in the literature 
dealt with either EEG or fMRI separately, and 
no package collected these two neurofunction-
al data in the same tool to analyze and compare 

the output results. EEGLAB [28] processed 
EEG signals, while ELAN [29] processed 
EEG MEG and LFP signals in the same pack-
age. The REST [24], VCfMRI [26], SPM [31], 
and FSL [32] dealt with fMRI processing, the 
FSL used melodic ICA with fMRI analysis.

The presented package introduced a simple 
analysis of the EEG and fMRI using ICA in 
the same window. The proposed work was pre-
sented as part of the biomedical engineering 
instrumentation course; thus, it can be avail-
able for students or researchers using only a 
standalone application or executable file (.exe 
file) without installing the MATLAB platform.

In sum, the proposed functional toolbox 
provides the ability to deal with the available 
datasets efficiently. Also, the user could select 
the preferred portions of the functional biosig-
nal, process, and analysis of the neurofunc-
tional dataset using the standard ICA method. 
Finally, the results could be saved and visual-

Figure 7: The first three variables from Independent Component Analysis (ICA) applied to func-
tional Magnetic Resonance Imaging (fMRI) Region of Interest (ROI)
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Figure 9: Test answers results

Figure 8: Evaluation form
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ized using plots only.

Conclusion
The presented graphical user interface tool 

can be used as a demonstration software pack-
age for programmers and engineers. Physi-
cians and healthcare specialists can easily 
compare the functional results. The proposed 
tool can process and analyze EEG and fMRI 
datasets by 1) loading the raw EEG dataset, 2) 
preprocessing EEG signal by removing the ar-
tifacts, filtering, epoch selection, and averag-
ing, 3) analyzing and processing EEG data us-
ing ICA to extract the most critical features of 
the EEG signal, 4) loading the raw fMRI data 
with.nii or.img and.hdr format, and watching 
images, such as slices of a brain or the whole 
brain as well as active areas detected in the 
brain, 5) fMRI preprocessing by calling the 
SPM package within the considered tool, 6) 
observing the loaded fMRI data as image slic-
es by selecting many slices; thus, this package 
provides the capability of selection, which the 
number of slices can display the active zones 
in the definite region, and 7) analyzing and 
processing fMRI data using ICA to examine 
the components related to artifacts or task-
related.

In sum, the users can import, select, process, 
and analysis the functional datasets using the 
ICA method, and save and visualize all the re-
sults using plots.

The proposed work is important in Iraq 
and neighboring countries due to a shortage 
in using the GUI for biomedical applications 
for researchers and educational laboratory  
purposes.
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 3. Theis FJ, Meyer-Bäse A. Biomedical signal 
analysis: contemporary methods and applica-
tions. MIT Press; 2010.

 4. AL-Jobouri HK, Çankaya İ, Karal O. From 
biomedical signal processing techniques to 
fMRI Parcellation. Biosciences Biotechnol-
ogy Research Asia. 2015;12(2):1115-38. doi: 
10.13005/bbra/1764.

 5. Subha DP, Joseph PK, Acharya U R, Lim 
CM. EEG signal analysis: a survey. Journal of 
Medical Systems. 2010;34(2):195-212. doi: 
10.1007/s10916-008-9231-z.

 6. AlJobouri HK, Ali FE. Brain-Computer Inter-
face Based on VEP and FMRI Package. Am J 
Biomed Sci. 2019;11(1):36-43. doi: 10.5099/
aj190100036.

 7. Aljobouri HK, Jaber HA, Kocak OM, Algin O, 
Cankaya I. Clustering fMRI data with a robust 
unsupervised learning algorithm for neurosci-
ence data mining. Journal of Neuroscience 
Methods. 2018;299:45-54. doi: 10.1016/j.
jneumeth.2018.02.007.

 8. Ashby FG. Statistical analysis of fMRI data. 
MIT Press; 2011.

 9. Jung TP, Makeig S, McKeown MJ, Bell AJ, 
Lee TW, Sejnowski TJ. Imaging Brain Dy-
namics Using Independent Component 
Analysis. Proc IEEE Inst Electr Electron Eng. 
2001;89(7):1107-22. doi: 10.1109/5.939827. 
PubMed PMID: 20824156. PubMed PMCID: 
PMC2932458.

 10. Plank M. Independent Component Analysis– 
demystified. 2014. Available from: https://
www.brainproducts.com/files/public/prod-
ucts/brochures_material/pr_articles/1402_
ST_ICA.pdf.

 11. Ungureanu M, Bigan C, Strungaru R, Lazares-
cu V. Independent component analysis applied 
in biomedical signal processing. Measurement 
Science Review. 2004;4(2):18.

 12. Sun L, Liu Y, Beadle PJ. Independent compo-
nent analysis of EEG signals. In Proceedings 
of 2005 IEEE International Workshop on VLSI 

Hadeel K Aljobouri, et al

178



J Biomed Phys Eng 2023; 13(2)

ICA for Neurofunctional Data Analysis

Design and Video Technology; Suzhou, China: 
IEEE; 2005. p. 219-22. 

 13. Winkler I, Haufe S, Tangermann M. Automatic 
classification of artifactual ICA-components for 
artifact removal in EEG signals. Behav Brain 
Funct. 2011;7:30. doi: 10.1186/1744-9081-7-
30. PubMed PMID: 21810266. PubMed PM-
CID: PMC3175453.

 14. Hyvärinen A, Oja E. Independent component 
analysis: algorithms and applications. Neural 
Netw. 2000;13(4-5):411-30. doi: 10.1016/
s0893-6080(00)00026-5. PubMed PMID: 
10946390.

 15. Naik GR, Kumar DK. An overview of indepen-
dent component analysis and its applications. 
Informatica. 2011;35(1):68-82.

 16. Raimondo F, Kamienkowski JE, Sigman M, 
Fernandez Slezak D. CUDAICA: GPU optimi-
zation of Infomax-ICA EEG analysis. Com-
put Intell Neurosci. 2012;2012:206972. 
doi: 10.1155/2012/206972. PubMed PMID: 
22811699. PubMed PMCID: PMC3395116.

 17. Rejer I, Gorski P. Benefits of ICA in the Case 
of a Few Channel EEG. Annu Int Conf IEEE 
Eng Med Biol Soc. 2015;2015:7434-7. doi: 
10.1109/EMBC.2015.7320110. PubMed 
PMID: 26738010.

 18. Calhoun VD, Adali T, Pearlson GD, Pekar 
JJ. A method for making group inferences 
from functional MRI data using indepen-
dent component analysis. Hum Brain Mapp. 
2001;14(3):140-51. doi: 10.1002/hbm.1048. 
PubMed PMID: 11559959. PubMed PMCID: 
PMC6871952.

 19. Calhoun VD, Adalı T. Multisubject indepen-
dent component analysis of fMRI: a de-
cade of intrinsic networks, default mode, 
and neurodiagnostic discovery. IEEE Rev 
Biomed Eng. 2012;5:60-73. doi: 10.1109/
RBME.2012.2211076. PubMed PMID: 
23231989. PubMed PMCID: PMC4433055.

 20. Chen Z, Calhoun VD. Task-evoked brain 
functional magnetic susceptibility mapping 
by independent component analysis (χICA). 
J Neurosci Methods. 2016;261:161-71. doi: 
10.1016/j.jneumeth.2016.01.007. PubMed 
PMID: 26778607.

 21. Moritz CH, Haughton VM, Cordes D, Quigley M, 
Meyerand ME. Whole-brain functional MR im-
aging activation from a finger-tapping task ex-
amined with independent component analysis. 

AJNR Am J Neuroradiol. 2000;21(9):1629-35. 
PubMed PMID: 11039341. PubMed PMCID: 
PMC8174873.

 22. Calhoun VD, Adali T, Pearlson GD, van Zijl PC, 
Pekar JJ. Independent component analysis of 
fMRI data in the complex domain. Magn Re-
son Med. 2002;48(1):180-92. doi: 10.1002/
mrm.10202. PubMed PMID: 12111945.

 23. Bi XA, Sun Q, Zhao J, Xu Q, Wang L. Non-
linear ICA Analysis of Resting-State fMRI in 
Mild Cognitive Impairment. Front Neurosci. 
2018;12:413. doi: 10.3389/fnins.2018.00413. 
PubMed PMID: 29970984. PubMed PMCID: 
PMC6018085.

 24. Song XW, Dong ZY, Long XY, Li SF, Zuo XN, 
Zhu CZ, et al. REST: a toolkit for resting-state 
functional magnetic resonance imaging data 
processing. PLoS One. 2011;6(9):e25031. 
doi: 10.1371/journal.pone.0025031. 
PubMed PMID: 21949842. PubMed PMCID: 
PMC3176805.

 25. Jaber HA, Aljobouri HK, Çankaya İ, Koçak OM, 
Algin O. Preparing fMRI data for postprocess-
ing: Conversion modalities, preprocessing 
pipeline, and parametric and nonparametric 
approaches. IEEE Access. 2019;7:122864-77. 
doi: 10.1109/ACCESS.2019.2937482.

 26. Jaber H, Aljobouri H, Kocak O, Algin O, Çanka-
ya I. VCfMRI: A Matlab Toolbox for Visualiza-
tion and Conversion of fMRI Data Modalities. 
Basic and Clinical Neuroscience. 2019. doi: 
10.32598/bcn.2021.1694.1.

 27. Aljobouri HK. A Virtual EMG Signal Control 
and Analysis for Optimal Hardware Design. In-
ternational Journal of Online & Biomedical En-
gineering. 2022;18(2):154-66. doi: 10.3991/
IJOE.V18I02.27047.

 28. Delorme A, Makeig S. EEGLAB: an open 
source toolbox for analysis of single-trial EEG 
dynamics including independent component 
analysis. J Neurosci Methods. 2004;134(1):9-
21. doi: 10.1016/j.jneumeth.2003.10.009. 
PubMed PMID: 15102499.

 29. Aguera PE, Jerbi K, Caclin A, Bertrand O. 
ELAN: a software package for analysis and 
visualization of MEG, EEG, and LFP signals. 
Comput Intell Neurosci. 2011;2011:158970. 

 30. Abou-loukh SJ, Ibrahim AK. Speech denoising 
using mixed transform. Al-Nahrain Journal for 
Engineering Sciences. 2013;16(1):1-8.

 31. SPM. Statistical Parametric Mapping. 1991. 

179



J Biomed Phys Eng 2023; 13(2)

Hadeel K Aljobouri, et al

Available from: https://www.fil.ion.ucl.ac.uk/
spm/.

 32. Jenkinson M, Beckmann CF, Behrens TE, 
Woolrich MW, Smith SM. Fsl. Neuroimage. 
2012;62(2):782-90.

 33. Bidgood WD Jr, Horii SC, Prior FW, Van Syckle 
DE. Understanding and using DICOM, the data 
interchange standard for biomedical imaging. 
J Am Med Inform Assoc. 1997;4(3):199-212. 
doi: 10.1136/jamia.1997.0040199. PubMed 
PMID: 9147339. PubMed PMCID: PMC61235.

 34. Robb RA, Hanson DP, Karwoski RA, Lar-
son AG, Workman EL, Stacy MC. Analyze: 

a comprehensive, operator-interactive soft-
ware package for multidimensional medical 
image display and analysis. Comput Med 
Imaging Graph. 1989;13(6):433-54. doi: 
10.1016/0895-6111(89)90285-1. PubMed 
PMID: 2688869.

 35. NIfTI. Neuroimaging Informatics Technol-
ogy Initiative. 2003 [accessed 2021 Mar 10]. 
Available from: https://nifti.nimh.nih.gov/. 

 36. SPM. Single subject epoch (block) auditory 
fMRI activation data. 2003. Available from: 
https://www.fil.ion.ucl.ac.uk/spm/data/audi-
tory/.

180


