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Introduction

The most commonplace neoplasms in humans are skin cancers 
[1,2], which are mainly divided into two types: melanoma and 
non-melanoma. However, melanoma (the most threatening type 

of skin cancer) is not common compared to other malignant types, it is 
more likely to spread than other skin cancers [3,4]. In 2020, an estima-
tion 324,635 new registered cases of melanoma from 185 countries was 
diagnosed, of which 57,043 cases led to death [2]. 

Non-melanoma skin cancer (NMSC) mainly consists of Basal Cell 
Carcinoma (BCC) and Squamous Cell Carcinoma (SCC), grouped and 
called “keratinocyte carcinomas” (KC) due to the formation of a type 
of skin cell called keratinocyte. Histologically, approximately 70% of 
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ABSTRACT
Background: The conventional procedure of skin-related disease detection is a vi-
sual inspection by a dermatologist or a primary care clinician, using a dermatoscope. 
The suspected patients with early signs of skin cancer are referred for biopsy and 
histopathological examination to ensure the correct diagnosis and the best treatment. 
Recent advancements in deep convolutional neural networks (CNNs) have achieved 
excellent performance in automated skin cancer classification with accuracy similar to 
that of dermatologists. However, such improvements are yet to bring about a clinically 
trusted and popular system for skin cancer detection. 
Objective: This study aimed to propose viable deep learning (DL) based method 
for the detection of skin cancer in lesion images, to help physicians in diagnosis.
Material and Methods: In this analytical study, a novel DL based model was 
proposed, in which other than the lesion image, the patient’s data, including the ana-
tomical site of the lesion, age, and gender were used as the model input to predict the 
type of the lesion. An Inception-ResNet-v2 CNN pretrained for object recognition was 
employed in the proposed model. 
Results: Based on the results, the proposed method achieved promising perfor-
mance for various skin conditions, and also using the patient’s metadata in addition 
to the lesion image for classification improved the classification accuracy by at least 
5% in all cases investigated. On a dataset of 57536 dermoscopic images, the proposed 
approach achieved an accuracy of 89.3%±1.1% in the discrimination of 4 major skin 
conditions and 94.5%±0.9% in the classification of benign vs. malignant lesions.  
Conclusion: The promising results highlight the efficacy of the proposed approach 
and indicate that the inclusion of the patient’s metadata with the lesion image can en-
hance the skin cancer detection performance. 
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NMSCs are classified as BCC and 20% as 
SCC [5,6]. It is also estimated that 5.4 mil-
lion new cases of KCs occur in the US, annu-
ally [1,2]. In 2020, among all types of NMSC, 
63,731 individuals from 185 countries died 
worldwide [2].

By 2017, melanoma led to approximate-
ly 75% of all skin cancer-related deaths [7]. 
However, even though the incidence rate of 
melanoma is on the rise, it no longer accounts 
for more than 50% of all skin cancer-related 
deaths [2]. Early detection of skin cancers is 
effective for their treatment. Most cases of 
NMSCs can be cured, especially in the begin-
ning stages. Melanoma is also highly curable 
when detected in its earliest stages.

The detection of melanoma using no special 
visual aid equipment by expert dermatologists 
has about 60% of accuracy [7]. The detection 
performance is even lower for primary care 
clinicians with only 23-46% accuracy [8]. 
However, the recent developments of deep-
learning-based methods have led to increased 
performance in medical and non-medical 
fields. Further, they can assist dermatologists 
to track skin lesions in images to detect cancer 
earlier.

Images are applied in three conventional 
modalities for skin lesions: dermoscopic, his-
tological, and photographic images. Dermos-
copy images are obtained by a specialized 
instrument, leading to high-resolution skin 
imaging with a decrease in the skin surface re-
flectance [9]. Histological images are acquired 
via invasive biopsy and microscopy [7]. Both 
dermoscopy and histological methods result 
in great standardized images, while simple 
photographic images (using smartphones and 
cameras) show discrepancies in the zoom, 
angle, and lighting and may contain irrelevant 
backgrounds, making automated classification 
significantly more challenging [10]. To over-
come this challenge, we require a data-driven 
approach using millions of pre-training and 
training images to make classification robust 
to photographic variability [11].

In the recognition of skin cancer, the main 
challenge is to accurately diagnose malignant 
versus benign lesions with the same etiology 
and similarities in shape, border, and color, 
which is complicated for dermatologists, 
since both are derived from melanocyte cells. 
The same challenge exists for distinguishing 
between malignant keratinocyte carcinoma 
(BCC and SCC) versus benign keratosis [7]. 
Moreover, malignant cutaneous lymphomas 
versus inflammatory non-neoplastic eczema 
and dermatitis are not easily differentiated 
[12]. Malignant dermal lesions (Kaposi sarco-
ma) are also difficult to be distinguished from 
benign dermal lesions (e.g., dermatofibroma 
and vascular lesions) [7]. Since the visual in-
spection contains errors, biopsy and histopath-
ological examination is the gold standard of 
diagnosis. A discernment between these eight 
categories will cover approximately 97% of 
the incidence rate of all skin-related cancers. 

The present analytical study aimed to intro-
duce a new viable DL based approach for the 
automatic prediction of skin lesion type as a 
tool, which can help physicians interpret le-
sion images. Additionally, the proposed model 
used the patient data, such as the anatomical 
site of the lesion, age, gender, and the lesion 
image to predict the lesion type. Recent stud-
ies [1,2,13] have shown that the skin cancer 
incidence rate increases with age and men are 
10% more likely to develop melanoma skin 
cancer than women and are 4% more likely 
to die from melanoma than women. Also, a 
correlation between the lesion type and its 
anatomical site on the body has been found 
[1,2,13]. These findings motivated us to inves-
tigate the impact of including this information 
(age, gender, and anatomical site) as the input 
of our automated model for skin cancer detec-
tion.

Material and Methods

Methods
In this analytical study, we focus on the most 
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critical and widespread types of malignant le-
sions (approximately 97% of the incidence 
rates of all skin-related cancers). Figure 1 
shows various skin lesions demonstrating the 
difficulty in distinguishing between malignant 
and benign lesions. The proposed method con-
ducts two tasks: firstly, binary classification of 
malignant vs. benign lesions and secondly, 
a more detailed classification between eight 
skin conditions, including 4 benign and 4 ma-
lignant lesion types as seen in Figure 2.

Datasets 
Three databases, including the International 

Skin Imaging Collaboration (ISIC) Dermo-
scopic Archive released for 2019 [14-16] and 
2020 [17,18] melanoma detection challenges, 

the PAD-UFES-20 [19,20] and a part of images 
from the Fitzpatrick17k [21] were used to train 
and evaluate the proposed system. ISIC 2019 
consists of images with nine different diag-
nostic categories. All images are dermoscopic, 
biopsy-proven, and annotated as malignant or 
benign, and ISIC 2020 has images of unique 
benign and malignant skin lesions from over 
2,000 patients. All malignant diagnoses were 
confirmed via histopathology; benign diagno-
ses were confirmed using either expert agree-
ment, longitudinal follow-up, or histopathol-
ogy. Both ISIC datasets include metadata with 
extra information about the gender and age of 
the patients and the anatomical site of the le-
sion on the body. The PAD-UFES-20 consists 
of photographic samples of six different types 

Figure 1: Example images from the dataset; both photographic and dermoscopic images are 
shown for melanocytic lesions to visualize the difference. 

Figure 2: A schematic diagram of important skin lesions (orange: malignant, green: benign, 
gray: melanoma, yellow: actinic keratosis, a pre-malignant condition that is an early form of 
squamous cell carcinoma). 
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of skin lesions so that each image is defined 
as whether it is biopsied or not, while all ma-
lignant lesions are biopsy-proven. This dataset 
also provides metadata, such as the gender and 
age of the patient and the anatomical site of 
the lesion. The Fitzpatrick17k offers a three-
partition label for photographic images, in-
cluding malignant, benign, and non-neoplastic 
lesions. However, metadata were not provided 
in Fitzpatrick17k. Our dataset, derived from 
the three databases described above comprises 
66735 clinical images representing 16 differ-
ent skin-disease conditions, including 58031 
and 8704 dermoscopy and photographic im-
ages, respectively.

Training algorithm
The Inception-ResNet-v2 convolutional 

neural network (CNN) was used to classify le-
sions due to its best performance for object rec-
ognition compared to all state-of-the-art CNN 
models, demonstrating low computational cost 
and high accuracy [22]. Inception-ResNet-v2 
was pre-trained for object recognition on 1.28 
million images (1,000 object categories) from 
the ImageNet Large Scale Visual Recognition 
Challenge. For transfer learning, the classifi-
cation layer was replaced to account for the 
corresponding number of classes. The network 
was trained on our dataset, while all trainable 
parameters were fine-tuned across all layers. 
Inception-ResNet-v2 takes as input, images of 
299×299 pixels with normalized pixel values 
between -1 and 1. Consequently, all images 
were resized to 299×299 pixels and the values 
of pixels were scaled between -1 and 1 before 
their feeding into the network. The CNN was 
trained with backpropagation using the Adam 
optimizer with a global learning rate of 0.001 
and a decay factor of 16 every 30 epochs. For 
other arguments of Adam optimizer, beta_1, 
beta_2, and epsilon were set to 0.9, 0.999, 
and 0.1, respectively. Training and testing of 
the network were performed using Keras and 
Google’s TensorFlow deep learning frame-
works. For data augmentation, a rotation (with 

a random angle between 0̊ and 90̊), and also 
flipping (either vertical or horizontal with a 
probability of 0.5) of the original, and rotated 
images were conducted so that the number of 
images increased by a factor of 4. 

The performance of the proposed model was 
assessed using a 10-fold cross validation ap-
proach without any overlap of the training or 
test set, i.e. no image was included in both 
training and test sets. For each skin disease, an 
equal number of images were used across dif-
ferent folds. Note that most images were der-
moscopic and biopsy-proven, and only some 
skin conditions had only-photographic images 
(from the Fitzpatrick17k dataset), which were 
expert-annotated. These skin conditions were 
cutaneous lymphomas, Kaposi sarcoma, ec-
zema, dermatitis, and benign dermal cysts.

Classification approaches
Two approaches were implemented as fol-

lows: 1) denoted as direct, a CNN was directly 
trained and tested for either binary or 8-class 
classification (Figure 3a, b), 2) denoted as 
probability-based (PB), a CNN was trained 
to classify 16 different diseases; for the test, 
the probabilities of each 16 classes were used 
to conduct the binary and 8 class classifica-
tion tasks by summing up the correspond-
ing children nodes’ probabilities shown in  
Figure 2; a diagram of this approach is pre-
sented in (Figure 3c). As novel contribution of 
this work, a CNN was applied to metadata em-
bedded lesion images, using either of the two 
sub-approaches, namely direct (denoted as 
metadata direct) or probability-based (denoted 
as metadata-PB). The patient’s metadata, in-
cluding the gender, age, and anatomical site of 
the lesion, were embedded in the lesion image. 
The proposed approach encoded the metadata 
related to each image using a pseudo-QR-code 
to replace the image’s top-left corner pixels, 
which were always backgrounded without rel-
evant information.

Both the ISIC dermoscopic archives and the 
PAD-UFES-20 offer patients’ metadata related 
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to the age, gender, and anatomical site of the 
lesion. However, their anatomical site infor-
mation standard is different. We removed this 
discrepancy by simply mapping them accord-
ing to Table 1. The metadata was encoded as a 
feature vector to produce a simple pseudo-QR 
code. A one-hot encoding was applied for the 
categorical features, i.e., the anatomical site 
and gender (male: 01, female: 10, NaN: 00) 
[23,24] (Table 2), whereas for the age, which 
is a real/integer feature, a thermometer encod-
ing was conducted [24] (Table 3).

An additional bit in the feature vector was 
considered to encode the image type; (dermo-
scopic: 1, photographic: 0). Dermoscopic im-
ages have much higher quality, and the knowl-
edge of the image type may help the CNN in 
the classification

The resulting 14-bit feature vector was con-
structed as shown in Figure 4a and rearranged 

as a 4×4 pseudo-QR-code, in which zeros and 
ones were shown as white and black pixels, 
respectively (Figure 4b). The 15th and 16th pix-
els were blank and set to white for all images. 
Note that for images with no metadata, such as 
those from the Fitzpatrick17k dataset, all 4×4 
pixels were set to white. The top-left corner of 
the lesion image was replaced with the pseu-
do-QR-code, as displayed in Figure 4c. The 
metadata-embedded images were then used as 
inputs to the CNN.

Results
Table 4 shows the classification accuracies 

of four approaches on the binary and 8-class 
tasks, including malignant melanoma, benign 
melanocytic nevus, malignant and pre-malig-
nant KC, benign keratosis, malignant cutane-
ous lymphoma, benign eczema and dermatitis, 
malignant dermal lesions, and benign dermal 

Figure 3: The workflow of (a) direct approach: binary classification, (b) direct approach: 8-class 
classification, and (c) Probability-based (PB) approach: the Convolutional Neural Network (CNN) 
trained on 16 skin disease conditions, and the 8-class and binary classification task calculated by 
summing up the corresponding children nodes’ probabilities.
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lesions. The binary classes include malignant 
and benign. For the 8 class task, the confusion 
matrices for the worst- and best-performing 
approaches, i.e., direct and metadata-PB, were 
plotted for comparison in Figure 5, showing 
that the metadata-PB approach was confused 
less between malignant melanoma vs. benign 
melanocytic nevus (classes 0 and 1). Metada-
ta-PB performed even better as it did not mis-
classify melanocytic and keratinocytic lesions 
as cutaneous lymphoma, eczema, and derma-
titis, or Kaposi sarcoma. The performance of 
detecting malignant cutaneous lymphoma, 
Kaposi sarcoma, eczema, and dermatitis did 
not considerably change in metadata-PB. 
However, they were better differentiated from 
melanocytic and kertinocytic lesions. Column 
7 of the confusion matrices in Figure 5 shows 
that other lesion types were confused with 
benign dermal lesions, and row 6 shows that 
malignant dermal lesions were mislabeled. 
Together, they indicate the difficulty of dis-
cernment between dermal lesions versus other 
classes.

Despite the success of the proposed ap-
proach, it did not considerably enhance the 
performance of detecting cutaneous lympho-
ma, Kaposi sarcoma, eczema, and dermatitis, 

ISIC 2019 
annotation

ISIC 2020 annotation PAD-UFES-20 annotation Final site annotation

Head/neck Head/neck Face-Ear-Nose-Lip-Neck-Scalp Head/neck
Upper extremity Upper extremity Arm-Forearm-Hand Upper extremity
Lower extremity Lower extremity Thigh-Foot Lower extremity

Oral/genital Oral/genital - Oral/genital
Palms/soles Palms/soles Hand-Foot Palms/soles

Anterior torso Torso Chest
TorsoPosterior torso Torso Back

Lateral torso Torso -
*NaN NaN - NaN

*NaN indicates missing anatomical site information of an image, ISIC: International Skin Imaging Collaboration

Table 1: Mapping anatomical site annotations of different datasets to the final site annotations. 
The hyphen indicates no images related to that group. 

Target site annotation One hot encoding
Head/neck 100000

Upper extremity 010000
Lower extremity 001000

Oral/genital 000100
Palms/soles 000010

Torso 000001
*NaN 000000

*NaN indicates missing anatomical site information of 
an image

Table 2: One-hot encoding applied for the 
anatomical site annotation

Age spans Thermometer encoding
0-19 00001

20-39 00010
40-59 00100
60-78 01000
≥79 10000

*NaN 00000
*NaN indicates missing anatomical site information of 
an image

Table 3: Thermometer encoding applied for 
the age
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which only contained photographic images 
from the Fitzpatrick17k dataset. Therefore, the 
ISIC dataset, including 57536 dermoscopic in 
9 skin disease conditions (melanoma, BCC, 
SCC, actinic keratosis, nevus, solar lentigo, 
seborrheic keratosis, lichenoid keratosis, and 
lentigo NOS) were used to evaluate the effec-
tiveness of the proposed method on dermo-
scopic-only images. A binary (malignant, be-
nign) and a 4-class task (malignant melanoma, 
benign melanocytic lesions, malignant and 
pre-malignant keratinocyte carcinoma, and 
benign keratosis) were considered to assess 
the proposed method. The classification ac-
curacies (%) for dermoscopic only images for 

the metadata-PB method were 94.5±0.9 and 
89.3±1.1, for binary and 4-class tasks, respec-
tively, demonstrating improvement over the 
findings in Table 4, due to the higher quality 
of the images, fewer classes, and a more bal-
anced number of images across different skin 
conditions.

Table 5 also presents the results of recent 
studies in comparison to those of our proposed 
method, demonstrating that the proposed 
method outperformed previous approaches; 
however, a direct comparison is not possible 
due to the difference in datasets and the num-
ber of classes.

Discussion
This work introduced a novel approach by 

embedding the patient’s metadata in the le-
sion images to improve classification accu-
racy with deep CNNs. The proposed method 
enhanced the accuracy substantially (at least 
5% in all cases, P<0.001), highlighting the 
potential of this approach. These findings also 
show that the metadata contains valuable in-
formation useful for more efficient skin lesion 
classification.

The direct and PB approaches are similar to 
those applied in a study by Esteva et al. [7] 
using a private dataset of 129,450 images with 
757 different skin conditions. Despite different 

Figure 4: (a) The Feature vector, (b) the corresponding 4x4 pseudo-QR-code representation, and 
(c) the metadata embedded lesion image for a dermoscopic image from a lesion on the neck of 
a 45 years old male. The pseudo QR code replaced the top-left corner pixels of the lesion image. 

Method
Binary accuracy 

(%)
8-class accuracy 

(%)
direct 75.3±0.7 62.9±1.5
PB 76.6±0.9 66.1±1.6

metadata-
direct

80.9±0.8 68.1±1.9

metadata-
PB

84.8±0.9 71.5±1.8

PB: Probability-based

Table 4: The classification accuracies 
(mean±standard deviation) using 10-fold 
cross-validation.
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datasets and the number of skin conditions, the 
results of the current study were compared to 
those of their work [7]. In [7], three-partition 
and nine-partition labels were used, in which 
the three-partition label divided the skin condi-
tions into malignant, benign, and non-neoplas-
tic lesions. They [7] found that non-neoplastic 
lesions were better diagnosed by dermatolo-
gists rather than CNN’s. We included only two 
critical groups of non-neoplastic inflammatory 
lesions, namely eczema and dermatitis in our 

dataset because these two conditions are more 
challenging for dermatologists to detect due to 
their similarity to malignant cutaneous lym-
phoma [12]. In [7], the three-way classifica-
tion achieved an accuracy of 69.4±0.8% and 
72.1±0.9% using the direct and PB methods, 
respectively, whereas the nine-way classifica-
tion attained an accuracy of 48.9±1.9% and 
55.4±1.7% using the direct and PB methods, 
respectively. A comparison of the above re-
sults with those of our work indicates that the 

Study Datasets
Number of 

classes
Best Classification 

Accuracy

[7]
129,450 clinical images from a combination of open-access 
dermatology repositories, the ISIC Dermoscopic Archive, the 

Edinburgh Dermofit Library, and data from the Stanford Hospital.

9 classes & 3 
classes

55.4±1.9% & 
72.1±0.9%

[25] 3,753 RGB images of skin cancers collected from the Internet 4 groups 94.2%
[26] 11,444 dermoscopic images from the ISIC Dermoscopic Archive 5 classes 82.95%

[27] 5,846 clinical images of pigmented skin lesions
6 classes & 

Binary classes
86.2% & 91.5%

[28]
The 2019 International Skin Imaging Collaboration Grand Chal-

lenge (HAM10000 & BCN20000 datasets)
8 classes

58.5% on the 
BCN20000 82% on the 

HAM10000
[29] HAM10000 dataset 7 classes 87.91%

The proposed 
method

57,536 dermoscopic images from the ISIC Dermoscopic Archive
4 classes & 

Binary classes
89.3±1.1% & 
94.5±0.9%

ISIC: International Skin Imaging Collaboration, RGB: Red-Green-Blue, HAM: Human Against Machine,  
BCN20000: Hospital Clinic Barcelona

Table 5: The results of recent studies in comparison to those of our proposed method

Figure 5: The confusion matrices for the direct and metadata-PB (Probability-based) approach-
es for the 8-class task.
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proposed approach outperformed the method 
in [7], possibly due to the fewer classes in our 
work. Moreover, in comparison with [7], the 
fewer total skin conditions in this study are 
responsible for the reduced difference in per-
formance between the direct and PB methods.

Conclusion
This study introduced a novel method for 

skin lesion classification in metadata- em-
bedded images using a deep CNN (Incep-
tion-ResNet-v2). The results indicate that the 
proposed method improved the skin lesion 
classification performance by at least 5% by 
including the patient’s metadata (i.e. the ana-
tomical site of the lesion, age, and gender) as 
the model’s input data. The proposed method 
achieved 89.3% in the classification of 4 major 
skin conditions and 94.5% in distinguishing 
between malignant and benign lesions. Future 
work in this field should focus on developing 
larger public datasets, which provide metadata 
to facilitate the research community’s effort 
and to enhance the deep learning-based auto-
mated classification of skin lesions. In addi-
tion, future studies are warranted to investigate 
the impact of augmentation algorithms such as 
cutout regularization on CNN performance.
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