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Abstract
 Gold nanoparticles (AuNPs) exhibit a variety of attractive physical, chemical, optical, thermal, 
and biological properties, making them potential candidates for non-toxic drug and gene delivery carri-
ers. The surface modifications of AuNPs vastly enhance their circulation, minimize aggregation rates, and 
increase their targeting capability. In this investigation, cetyltrimethylammonium (CTAB) coated AuNPs 
were prepared and characterized for potential application in gene delivery. This surface modification can 
lead to the improvement of dispersibility and stability in aqueous solution, and surface charge density. In 
this study, CTAB coated AuNPs were complexed with plasmid DNA (pUMVC3-hIL-12) via electrostatic 
interaction and resulted in the formation of nano-sized CTAB-AuNP/plasmid DNA complexes with the 
size of 84.7±9.8 nm.  The zeta potential of these complexes was surface +4 mV at carrier: plasmid (C/P) 
ratio of 10. These complexes could condense the pDNA at C/P ratios of 8 and 10 and protect it against 
nuclease enzyme at C/P ratios of 4, 8, and 10. This study suggests that CTAB coated gold nanoparticles can 
be tested for potential applications in nucleic acid delivery. 
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1. Introduction
 Gene delivery has emerged as a promising 
technology for the treatment of diseases resulting 
from abnormal gene expression. It includes the de-
livery of exogenous nucleic acid materials to tar-
get cells with the different carrier such as viral and 
non-viral delivery systems. Viral vectors are high-
ly efficient gene carriers with flexible chemistry. 
However, immune responses may occur after their 

administration leading to several concerns regard-
ing their wide clinical application in humans. Non-
viral vectors consist of various materials including 
polymeric systems, liposomes, ceramic particles, 
carbon nanotubes, and metal nanoparticles. These 
gene carriers have shown less immunological 
concerns rather than viral vectors. However, their 
transfection efficiency is lower than viral-based 
systems. Enormous studies are underway to im-
prove their gene transfer efficiency through vari-
ous types of modifications (1-3). Among various 
non-viral vectors, great attention has been directed 
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12 plasmid delivery system for local gene therapy. 

2. Materials and methods
2.1. Materials
 CTAB coated gold nanoparticle pur-
chased from Sigma-Aldrich (Munich, Germany), 
Plasmid pUMVC3-hIL-12 (human interleukin-12 
under control of the cytomegalovirus enhancer/
promoter) was obtained from Aldevron (Madison, 
Wisconsin). FavorPrep™ Plasmid extraction Maxi 
kit was purchased from FAVORGEN (National 
Biotechnology Park, Taiwan). KBC power load 
dye was obtained from Kawsar biotech company 
(Tehran, Iran), DNase I and DNA ladder 1kb were 
purchased from Cinnagen company (Tehran, Iran).

2.2. Transformation and amplification of pUMV3-
hIL-12 plasmid 
 The plasmid pUMVC3-hIL12 was trans-
formed into Escherichia coli bacteria strain DH5α. 
Then the plasmid was amplified in Luria-Bertani 
(LB) medium with ampicillin. The amplified plas-
mid was extracted by Favorprep™ maxi kit ac-
cording to the manufacturer's instructions. The 
purity and concentration of the plasmid were mea-
sured by UV spectrophotometer. 

2.3. Polyplexes formation
 In order to form polyplexes, gold 
nanoparticles were prepared at different concentra-
tions in HBG buffer (HEPES-buffered-glucose so-
lution; 20 mM HEPES, 5% glucose, pH 7.2). Gold 
nanoparticles were mixed with the same volume 
of plasmid solution (40 µg/ml), then the mixture 
was incubated for 20-30 min at room temperature. 
The polyplex composition is defined based on C/P 
(w/w) ratio, in which C demonstrates the weight 
of carrier (gold nanoparticle) and P represents the 
weight of pDNA. 

2.4. Gel retardation assay
 In order to demonstrate the condensation 
of plasmid with gold nanoparticle, 20 µl of each 
polyplex solution with C/P ratios ranging from 0.5, 
2 and 4 were mixed with 4 µl KBC power load dye 
and the mixtures were loaded on the 1% agarose 
gel (w/v). Electrophoresis was run for 1 h at 50 V 
and the location of bands was visualized with UV 

to gold nanoparticles (AuNPs) (4). The system has 
been used for various purposes including photo-
medicine, targeted drug delivery, tissue engineer-
ing, biosensors, optical contrast agent, surface 
modification agent, as well as antibacterial and 
theranostic agents (5). The major advantages of 
AuNPs are stability, uniformity, and biocompat-
ibility with a unique electronic structure (3). Since 
AuNPs can be prepared in a scalable manner with 
minimal size dispersion and in multifunctional 
monolayers, they have been suggested as a poten-
tial gene carrier. (6). The disadvantages of pres-
ent technologies for gene delivery include the poor 
stability of traditional medications and genes in 
biological fluids, their enzymatic breakdown, and 
challenges in assuring their penetration through 
some barrier or nucleus of cells. The possibility 
of enhanced control and therapeutic efficacy is of-
fered by loading gold nanoparticles with nucleic 
acid compounds (7).
 Cetyltrimethylammonium bromide 
(CTAB) is a quaternary ammonium surfactant 
with positive charge density, CTAB coated AuNPs 
have several advantages such as improvement of 
dispersity and stability of AuNPs in aqueous solu-
tions. On the other hand, CTAB may induce cell 
toxicity due to its positive charge (8, 9). CTAB is 
a hydrophilic macromolecule that non-covalently 
binds to the surface of gold nanoparticles and in-
creases its solubility (9). Utilizing CTAB coating 
makes DNA more compact at the surface of gold 
nanoparticles (7). Hence, they facilitate endocyto-
sis and prevent DNA destruction in the endosome 
owing to its high buffering capacity through pro-
ton sponge effect (10). It seems that the relatively 
high transfection efficiency of gold nanoparticles 
with CTAB coating is due to high amine density 
and buffering capacity of the carrier (10, 11). In 
the present study, CTAB coated gold nanoparticles 
were prepared and their biophysical characteris-
tics was evaluated. Since we have been working 
on various non-viral carriers for efficient delivery 
of plasmid encoding IL-12 gene for local delivery 
of nucleic acids for melanoma therapy (12-14), 
we decided to evaluate the preliminary potential 
of CTAB-coated AuNPs for gene delivery. The re-
sults of this investigation are used for further eval-
uation of such system towards preparation of IL-
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illuminator. 

2.5. Resistance of pDNA against nuclease degra-
dation
 DNase I was utilized for evaluating the 
protection effect of gold nanoparticles against 
enzymatic degradation. Briefly, polyplexes were 
prepared at different C/P ratios (0, 0.5, 2, 4, 8, and 
10) as described earlier. Then, DNase I was added 
to polyplex solution. The same formulations were 
treated with PBS (as negative control) and incu-
bated at 37oC for 30 min. In order to inactivation 
of DNase I, EDTA (100 mM) was added to the 
samples. Finally, sodium dodecyl sulfate (SDS) in 
NaOH (1M) was added and mixed to separate the 
plasmids from the polyplexes. Then, the samples 
were run on agarose gel for 1 h at 50 V. The loca-
tion of plasmid bands was visualized using UV il-
luminator.

2.6. Particle size and surface charge density mea-
surement
 Particle size and zeta potential were mea-
sured by dynamic light scattering (DLS) and Laser 
Doppler Velocimetry (LDV), respectively. DLS 
measurements were carried out using a Nanotrack 
particle size analyzer and LDV measurements 
were done by Microtrack Zeta Check@ equipment 
HoribaSz-100 (Japan). Desirable amounts of gold 
nanoparticles were dissolved in 125 µl HBG buf-
fer and added to the equal volume of HBG buffer 
containing the plasmid. These measurements were 
carried out at C/P ratio of 10, and the results were 
reported as mean ± SD (n=3).

3. Results and discussion 
3.1. pDNA condensation ability
 One of the main factors for successful 
gene delivery by the polycationic compounds is 
the ability of these positively charged materials in 
condensation of pDNA and formation of nanostruc-
tures (15). The formation of CTAB-AuNPs/pDNA 
complexes is the result of electrostatic interaction 
of surface positive charge of CTAB AuNPs with 
negatively charged pDNA phosphate backbone. 
(4). Gel retardation assay was utilized for evaluat-
ing the ability of CTAB AuNPs to condense the 
pDNA. The mobility of pDNA in agarose gel is 

an indicator of the strength of electrostatic inter-
action between the carrier and pDNA. The results 
of gel retardation assay (Figure 1.) demonstrated 
that CTAB-AuNPs couldn't condense the plasmid 
at C/P ratios of 0, 0.5, 2, and 4 while at higher C/P 
ratios of 8 and 10 full condensation was occurred. 
With increasing the C/P ratio, more positive charge 
was provided and subsequently higher condensa-
tion ability for CTAB-AuNPs was observed. The 
effect of the formation of loose or tight complexes 
has been discussed in several literatures. There are 
some reports indicating that the formation of tight 
complexes outside the cells is a prerequisite step 
for successful gene delivery. These tight complexes 
are able to protect nucleic acid materials and form 
smaller nanoparticles. On the other hand, there are 
some investigations demonstrating the impact of 
loose complexes on transfection efficiency. The 
higher transfection efficiency by loose complexes 
could be the result of efficient vector unpackag-
ing inside the cell nucleus. Since the expression 
of genes needs the dissociation of plasmid from 
its carrier, loose complexes may provide easier ac-
cess to the transcriptional machinery of the cell. 
Altogether, the association of plasmid and carrier 
outside the cell is crucial to form nano-sized com-
plexes while the dissociation of plasmid from car-

Figure 1. Gel retardation assay. pDNA condensa-
tion by CTAB-AuNPs evaluated by gel retardation 
assay at various C/P ratios ranging from 0 to 10.
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rier provide opportunity for efficient transcription 
of the transgene (16).

3.2. Protection of plasmid against DNase I diges-
tion
 The condensation of plasmid with CTAB-
AuNPs not only forms nanoparticles with favor-
able charge density but also protects the plasmid 
from enzymatic degradation. In order to dem-
onstrate the protective effect of CTAB-AuNPs 
against enzymatic digestion, DNase I was utilized 
as a model. Agarose gel electrophoresis demon-
strated the protective effects of CTAB-AuNPs 
against nuclease digestion. As illustrated in  
Figure 2. all the complexes at all C/P ratios re-
mained intact without the enzyme treatment, while 
the naked pDNA was completely digested by the 
nuclease enzyme. According to our results, the 
protection effect was significantly increased with 
higher C/P ratios. CTAB-AuNPs could protect the 
plasmid from digestion at C/P ratios of 4, 8, and 10 
whereas enzymatic digestion was occurred at C/P 

ratios of 0.5 and 2. Although, there are some inves-
tigations showing that higher condensation ability 
and surface charge density do not necessarily lead 
to more protective effect against nuclease diges-
tion (17, 18). According to several studies, the 
binding affinity of polycationic structure to plas-
mid cannot necessarily lead to efficient gene deliv-
ery. Loose binding affinity may lead to digestion 
and destruction of the nucleic acids by enzymes 
present in the cellular matrix microenvironment, 
resulting in lower gene transfer efficiency. On the 
other hand, strong binding may lead to weak disso-
ciation of the nucleic acid payload from its carrier 
at the target site leading to low gene delivery (13, 
19) . A full condensation would not always provide 
significant protection against degrading enzymes. 
This behavior could be associated with the others 
polyplexes physicochemical features, such as par-
ticle shape, size, and charge. These properties are 
likely to lead to the creation of nanoparticles with 
plasmid parts on their surface areas, increasing the 
sensitivity of exposed pDNA segments to nuclease 

Figure 2. Protection against DNase I digestion. Polyplexes at various C/P ratios were tested with and with-
out DNase I, to assess the protection of plasmid.
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digestion (20).

3.3. Measurement of particle size and zeta poten-
tial
 One of the critical characteristics of com-
plexes for effective gene delivery is their size and 
surface charge density. These two parameters are 
determining factors for biodistribution in the body 
and the mechanisms of cell entrance (21, 22). The 
particle size and zeta potential of CTAB-AuNPs 
and its complex with pDNA at C/P of 10 were mea-
sured.  As demonstrated in Figure 3, the particle 
size of CTAB-AuNPs was 10±4 nm while the size 
of its complexes with pDNA at C/P ratio of 10 was 
84.7±9.8 nm. The zeta potential of CTAB-AuNPs 
was +30 mV, while it was reduced to +4 mV fol-
lowing the formation of complex with pDNA at 
C/P ratio of 10. This reduction of zeta potential is 
the result of the interaction between the positive 
charge of CTAB-AuNPs and the negative charge 
of the phosphate backbone of pDNA. The neutral-
ization of the surface positive charge of CTAB-
AuNPs leads to the formation of larger complexes 
due to the weaker repulsion between complexes. It 
has been reported that endocytosis in many mam-
malian cells is limited to particles smaller than 150 
nm. Generally, the size of 50-100 nm is the opti-
mal size range for the polyplex to reach the cells 
(9). 
 The particle size of the complex has a crit-
ical role in gene delivery (23). According to previ-
ous studies, the particle size of gold nanoparticles 
without coating has been estimated to be around 

89 nm (24). According to a study on the effect of 
coating of different materials on the properties of 
gold nanoparticles (2011), it was shown that gold 
nanoparticles coated with citrate, Arabic gum, and 
starch have particle sizes of 20, 23, and 3 nm, re-
spectively (24). Porcaro et al. (2016) showed that 
the size of glucose-coated gold nanoparticles is 
about 35-40 nm (25). In another study, the particle 
size of the citrate-coated gold nanoparticles com-
plex was 15.5 nm (26). In a study carried out by 
Zhang et al., (2018) using cystamine-coated gold 
nanoparticles, the particle size of the complex 
was estimated around 13 nm (27). Hameed et al. 
(2020) conducted a study on the effect of differ-
ent amino acid coatings on gold nanoparticles for 
drug delivery (28). The result of this study showed 
the particle size of complexes following the coat-
ing with tyrosine, tryptophan, and cysteine was 
27.2, 14.6, and 8.6 nm, respectively. In the present 
study, particle sizes at two ratios of 8 and 10 were 
not significantly different and both ratios were in 
the optimal size range for gene delivery purposes. 
 The surface charge of the gene delivery 
system is another crucial factor that affects tissue 
distribution and efficient gene delivery. Accord-
ing to previous studies, the ideal surface charge 
density for transferring polyplex into the cell is in 
the range of ±10 mV (28). In a study conducted 
by Kumar et al. (2015, they found that the sur-
face charge of hyaluronic acid co-functionalized 
gold nanoparticle complex was -33.2 mV (29). 
In another study, it was reported that the glucose-
coated gold nanoparticles complex, had a surface 

 

Figure 3. Particle size and zeta potential measurement. Size and zeta potential of CTAB-AuNP and its 
complex with pDNA at C/P ratio of 10 were assessed in HBG buffer. 
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charge of +30 mV (Porcaro et al., 2016) (25). 
Trigo et al. (2018) worked on the citrate-coated 
gold nanoparticles and the results showed that the 
complex had a zeta potential of -45.7 mV (26). In 
another study reported by Park et al. (2019), it was 
found that the zeta potential of this complex is -26.1 
mV (30). According to our results, the electrostatic 
interaction between the CTAB coated AuNPs and 
pDNA resulted in the formation of nanoparticles 
with the zeta potential of around +4 mV. The posi-
tive surface charge can lead to toxic effects on the 
cells. It has been shown that the polyplexes with 
high positive charge density result in the induction 
of toxic effects on the cells by various mechanisms 
including apoptosis and necrosis (31). The reduc-
tion of positive surface charge has been suggested 
as an efficient strategy to decrease the toxic effects 
of polycationic compounds (32). In this study, the 
reduction of zeta potential following the formation 
of nanoparticles can be considered as a promis-
ing result which may lead to lower toxicity on the 

cells. 

4. Conclusion 
 In this study CTAB coated AuNPs were 
prepared and characterized in terms of biophysi-
cal properties. The complexes showed suitable 
condensation ability and protection against nu-
clease digestion. Also, they were able to form 
nanoparticles at optimal size and charge. The re-
sults of current study are basis for further evalu-
ation of this gene carrier candidate in vitro and in 
vivo. 
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