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Introduction

Attention-deficit/hyperactivity disorder (ADHD) is a common 
neurodevelopmental disorder in children and adults character-
ized by inattention, excess activity, and impulsive behavior.

Electroencephalography (EEG) is widely used for diagnosing ADHD 
since 1938 [1]. The features extracted from EEG for ADHD classifica-
tion or markers are as follows: absolute and relative power [2], theta/
beta ratio [3-9], nonlinear features such as fractal dimension, Lyapunov 
exponent, entropy [10-13], event-related potentials features [14, 15], 
and connectivity features [16, 17].
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ABSTRACT
Background: Attention-deficit/hyperactivity disorder (ADHD) is a common neu-
rodevelopmental disorder in children and adults and its early detection is effective in 
the successful treatment of children. Electroencephalography (EEG) has been widely 
used for classifying ADHD and normal children. In recent years, deep learning leads 
to more accurate classification. 
Objective: This study aims to adapt convolutional neural networks (CNNs) for 
classifying ADHD and normal children based on the connectivity measure of their 
EEG signals.
Material and Methods: In this experimental study, the dataset consisted of 
61 ADHD and 60 normal children from which 13021 epochs were extracted as in-
put for model training and evaluation. Synchronization likelihood (SL) and wavelet 
coherence (WC) were considered connectivity measures. The neighborhood between 
EEG channels was arranged in a two-dimensional matrix for better representation. 
Four-dimensional (4D) and six-dimensional (6D) connectivity tensors were composed 
as model inputs. Two architectures were developed, one 4D and 6D CNN for SL and 
WC-based diagnosis of ADHD, respectively. 
Results: A 5-fold cross-validation was utilized to assess developed models. The 
average accuracy of 98.56% for 4D CNN and 98.85% for 6D CNN in epoch-based 
classification were obtained. In the case of subject-based classification, the accuracy 
was 99.17% for both models.  
Conclusion: Based on the evaluation metrics of the proposed models, ADHD chil-
dren can be diagnosed and ADHD and normal children can be successfully distin-
guished.
Citation:Citation: Mafi M, Rad Mafi M, Radfar Sh. High Dimensional Convolutional Neural Network for EEG Connectivity-Based Diagnosis of ADHD. J Biomed Phys 
Eng. 2022;12(6):645-654. doi: 10.31661/jbpe.v0i0.2108-1380.

Keywords
Attention-Deficit/Hyperactivity Disorder (ADHD); Functional Connectivity; Elec-
troencephalography; Neural Networks; Deep Learning; Artificial Intelligence

Copyright : © Journal of Biomedical Physics and Engineering
This is an Open Access article distributed under the terms of the Creative Com-
mons Attribution-NonCommercial 4.0 Unported License, (http://creativecom-
mons.org/licenses/by-nc/4.0/) which permits unrestricted use, distribution, 
and reproduction in any medium, provided the original work is properly cited.

645

https://orcid.org/0000-0002-5171-042X
https://doi.org/10.31661/jbpe.v0i0.2108-1380


J Biomed Phys Eng 2022; 12(6)

Majid Mafi, et al
EEG connectivity is a highly effective meth-

od to investigate synchronization between 
EEG channels, categorized into functional, 
nonlinear, effective, and information-based 
methods. Functional connectivity applies 
cross-correlation and coherence while effec-
tive connectivity uses Granger causality and 
partial directed coherence. Nonlinear connec-
tivity measures are phase synchronization and 
generalized synchronization [18]. EEG func-
tional connectivity has been a marker in devel-
opmental brain disorders, such as ADHD [19-
22], and EEG coherence and weighted phase 
lag index are two examples of connectivity 
measures applied for separating ADHD and 
normal patients [23-26]. Ahmadlou et al. [27] 
used synchronization likelihood as a connec-
tivity measure in combination with wavelet 
decomposition. EEG connectivity is also used 
for investigating and diagnosing other neuro-
logical disorders, such as Alzheimer’s disease 
[28, 29], epilepsy [30, 31], Parkinson’s disease 
[32], and autism [33-35]. 

Machine learning approaches have been 
widely applied in classifying medical diseases 
and disorders such as ADHD in the last two 
decades such as multilayer perceptron [12] 
and support vector machines [13].

Chen et al. [36] used convolutional neural 
networks (CNNs) in combination with a vi-
sualization technique to indicate personalized 
spatial-frequency differences between EEG 
signals of ADHD and normal children with 
an accuracy of 90.29%. In the other work, 
Chen et al. [17] used mutual information as 
a synchronization measure and rearranged it 
in a connectivity matrix in which some chan-
nels were repeated to ensure that adjacent 
channels were correctly stored in the matrix 
using a convolutional neural network with an 
accuracy of 94.67% on the test data as well. 
Moghaddari et al. [37] also used convolutional 
neural networks to classify ADHD and normal 
children. Considering multichannel EEG as an 
image, Moghaddari et al. decomposed EEG 
signals to its frequency sub-bands to make an 

RGB image and used it as CNN input. They 
also achieved an average accuracy of 98.48%. 
Ahmadi et al. [38] used a convolutional neural 
network with different bands and spatial filter-
ing kernels and reported 99.46% accuracy for 
classifying ADHD and normal children.

This study aims to introduce CNN mod-
els with connectivity features extracted from 
EEG signals for classifying ADHD and nor-
mal children.

Material and Methods
In this experimental study, EEG data were 

used for ADHD/control children, which is 
available online [39].

Data Acquisition
The data was collected from 121 healthy 

and ADHD subjects (males and females) aged 
7-12 years old. The experienced psychiatrist 
confirmed the disorder of the ADHD group, 
including 61 children by a diagnostic and 
statistical manual of mental disorders, fourth 
edition (DSM-IV) criteria. The control group 
consisted of 60 healthy children without any 
history of psychiatric disorders.

EEG signals were recorded based on 10-20 
standards using 19 channels (Fz, Cz, Pz, C3, 
T3, C4, T4, Fp1, Fp2, F3, F4, F7, F8, P3, P4, 
T5, T6, O1, O2) with a sampling rate of 128 
Hz. The reference electrodes were located on 
earlobes.

Based on the protocol description, partici-
pants were asked to count a set of comic strip 
pictures shown on a screen during EEG re-
cording. The number of pictures in each im-
age was randomly selected between 5 and 16. 
After child response, the next image was dis-
played immediately with a variety of the time 
duration of EEG recordings based on the aver-
age response speed [39].

The proposed method
The proposed method is described as follows: 

1) data were preprocessed to remove noise and 
artifacts from EEG signals. Since deep CNNs 
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usually use big data to train models, they were 
augmented to make big data and split it into 
train and test sets; in addition, the functional 
connectivity measure was calculated for all 
data epochs. The functional connectivity mea-
sures were arranged in four-dimensional (4D) 
and six-dimensional (6D) tensors according to 
their scalar or image nature. 4D connectivity 
and 6D scalogram tensors were given to the 
convolutional neural network as input.

Two different CNN architectures were used 
for 4D and 6D connectivity tensors; the train 
and validation sets were used for training the 
model and checking the model performance. 
5-fold cross-validation was used to report the 
evaluation metrics of the model.

Data preprocessing and augmenta-
tion

EEG signals were bandpass filtered between 
1 and 40 Hz using a 6th order Butterworth fil-
ter. Then EEG signals were segmented into 
2-second epochs with an overlap of 1s and 
those with amplitude exceeding 150 mv were 

removed due to motion artifacts. Independent 
component analysis (ICA) was used to mini-
mize eye-blink artifacts [40]. Further, each ep-
och was considered as a sample to make big 
data; 7460 and 5561epochs of ADHD children 
and normal children were extracted.

A 5×5 channel location matrix was defined 
with all 19 channels to consider adjacent 
channels in a convolutional scheme. Figure 
1 shows how the channels are located in the 
matrix; for example, the elements located at 
positions (3,4) and (4,5) represent C4 and P8 
channels, respectively.

Connectivity Measures and Tensors
In this study, two methods were used for 

measuring functional connectivity between 
EEG signals: synchronization likelihood (SL) 
and wavelet coherence (WC). SL is a nonlin-
ear method between two signals calculated 
based on the distance of each point of the first 
signal from its nearest neighbors and the re-
placement of nearest neighbors by the equal 
time closest neighbors of the second signal. 

Figure 1: The proposed two-dimensional channel location matrixes.
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Based on chaos theory two signals are repre-
sented in embedding space [41].

Wavelet coherence is a linear method for 
coherence estimation between two signals 
considering non-stationarity by using wave-
let transform, known as scalogram [42]. WC 
represents a two-dimensional (2D) map as a 
function of time and frequency as shown in 
Figure 2.

Functional connectivity should be measured 
between each two EEG channels, represented 

as a 2D matrix. In this work, the connectivity 
values were rearranged in a 4D tensor based 
on the described 2D channel location matrix. 
Hence a 2D by 2D (5×5×5×5) tensor is com-
posed to represent the functional connectivity 
as a connectivity tensor. For example, the ele-
ment located at the position (3,4,5) of the 4D 
connectivity tensor represents the functional 
connectivity value between C4 and P8 chan-
nels. A schematic stacked view of the 4D con-
nectivity tensor is shown in Figure 3.

Figure 2: A sample of wavelet coherence between two electroencephalography channels

Figure 3: Block diagram of connectivity tensors construction; a) 4D connectivity tensor for syn-
chronization likelihood (SL) and b) 6D connectivity tensor for wavelet coherence (WC).
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Wavelet coherence represents functional 
connectivity between two channels as a 2D 
image with the connectivity matrix 6D for 
WC. To understand better this 6D tensor, the 
4D connectivity tensor whose elements are 2D 
WC images individually was considered.

CNN Architecture 
The convolutional neural network is a pow-

erful tool for image classification with the 
main layers of a CNN, including convolu-
tional, pooling, fully connected, and softmax 
layers. The convolutional layer extracts fea-
tures from its input by using a kernel. During 
CNN training, the kernel coefficients are ad-
justed in a way to yield the minimum error and 
the pooling layer commonly comes after the 
convolutional layer(s) to reduce dimensional-
ity and keep the best features. The fully con-
nected layer flattens the output of its previous 
layer and feeds it to a common neural layer 
for predicting the classification output. Final-
ly, the softmax layer generates the predicted 

class. In this study, for better representation of 
connectivity between nearby channels, CNNs 
were used, i.e. the inputs come in 4D and 6D 
for SL and WC connectivity measures, respec-
tively. An architecture of 4D and 6D was used 
for the architecture of the CNNs. Tables 1 and 
2 show the architecture of the proposed 4D 
and 6D CNNs, respectively. The input, con-
volutional, and pooling layers are 4D or 6D, 
while the fully connected layer flattens its in-
put as common and processes in 1D.

Results
The proposed high dimensional convolu-

tional neural networks were evaluated using 
5-fold cross-validation. For this purpose, ep-
ochs were split into 5 subsets that in each fold, 
4 subsets were used to train the model and 
the remaining subset was used for evaluation. 
Moreover, 20% of training data was kept for 
evaluation during training to prevent overfit-
ting. The confusion matrix of 5 folds and the 
average for the proposed 4D and 6D CNNs are 

Layer Type Input Dimensions Kernel Size Padding Output Dimensions Parameters
Input 5×5×5×5

Convolution 5×5×5×5 3×3×3×3 1×1×1×1 5×5×5×5 82
Max Pooling 5×5×5×5 3×3×3×3 3×3×3×3

Fully Connected 81 5 410
Softmax 5 1 6

Table 1: Architecture of the proposed four-dimensional convolutional neural network

Layer Type
Input Dimen-

sions
Kernel Di-
mensions

Padding Stride
Output Di-
mensions

Parameters

Input 5×5×5×5×85×256
Convolution 5×5×5×5×85×256 1×1×1×1×7×7 5×5×5×5×79×250 50
Max Pooling 5×5×5×5×79×250 1×1×1×1×5×5 1×1×1×1×5×5 5×5×5×5×15×50
Convolution 5×5×5×5×15×50 3×3×3×3×3×3 1×1×1×1×0×0 3×3×3×3×13×48 730
Max Pooling 3×3×3×3×13×48 3 3 3 3 3 3 1×1×1×1×1×1 1×1×1×1×11×46

Fully Connected 506 8 4049
Softmax 8 1 9

Table 2: Architecture of the proposed six-dimensional convolutional neural network
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shown in Figures 4 and 5, respectively. On av-
erage, 4D CNN could truly predict 98.81% of 
ADHD epochs and 98.24% of normal epochs, 
while 6D CNN can truly predict 99.25% of 
ADHD epochs and 98.31% of normal epochs.

In supervised learning, accuracy is a fine 
metric to evaluate the model. Since the num-

ber of epochs in ADHD and control classes 
was not the same, F1_score, recall, and pre-
cision metrics were also used and defined ac-
cording to the number of true positives (TP), 
i.e. the number of epochs associated truly with 
the ADHD group by the model, true negatives 
(TN), i.e. the number of epoch associated truly 

Figure 4: Confusion matrices for 5-fold cross-validation of four-dimensional convolutional neu-
ral network classifier. Each confusion matrix shows true positive, true negative, false positive, 
and false negative of each fold with an average of 5 folds.

Figure 5: Confusion matrices for evaluation of six-dimensional convolutional neural network 
classifier. Each confusion matrix shows true positive, true negative, false positive, and false neg-
ative of each fold and the average of 5 folds.
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to the control group by the model, false posi-
tives (FP), i.e. the number of epochs associ-
ated wrongly to the ADHD group by the mod-
el, and false negatives (FN), i.e. the number 
of epochs associated wrongly to the control 
group by the model as below:

( ) ( )/Accuracy TP TN TP FP TN FN= + + + +

( )/Precision TP TP FP= +

( )/Recall TP TP FN= +

( )
( )
2

1_ score 
recall precision

F
recall precision
× ×

=
+

Table 3 shows the described metrics for ep-
och-based classification.

Subject-based classification
The high-dimensional neural network was 

evaluated to classify each subject. For this 
purpose, all 2-second epochs of each subject 
were considered and the class of each subject 
for each of 5 trained models was determined 
by the most repetitive class. The final class 
for each subject was determined by the most 
voted class by the 5 trained models. Table 4 
represents the results for subject-based clas-
sification.

Discussion
In this study, a novel CNN approach was 

proposed for classifying ADHD and normal 
children. Based on the importance of nearby 

channels in functional connectivity measures, 
a channel location matrix was designed and 
functional connectivity measures were ar-
ranged in 4D and 6D tensors, depending on 
their scalar or 2D image nature. The architec-
tures designed for convolutional neural net-
works are capable of getting 4D or 6D tensors 
as input and setting the weights in the kernel 
of convolutional layers and fully connected 
layers to achieve minimum error. 13021 2-sec-
ond epochs of EEG signals were extracted to 
make connectivity tensors and feed them to 
the proposed models. 5-fold cross-validation 
was utilized to assess the proposed models.

Kernels in convolutional layers of CNNs 
consider adjacent elements for processing. 
Moreover, adjacency among EEG channels 
plays an important role in connectivity analy-
sis. Thus, considering adjacency among EEG 
channels is important before feeding connec-
tivity measures to CNN. Since EEG electrodes 
are placed on the surface head, adjacency 
among EEG channels can be better represent-
ed in 2D (the described channel location ma-
trix) rather than 1D. Hence, the connectivity 
measures could have higher dimensions, i.e. 
four-dimensional for scalar connectivity mea-
sures and six-dimensional for 2D connectivity 
measures. In comparison with arranging EEG 
channels in 1D and making a 2D connectivity 
matrix [17], connectivity tensors with higher 
dimensions to feed CNN can reach higher ac-
curacy. 

Method Precision (%) Recall (%) F1_score (%) Accuracy (%)
Four-dimensional convolutional neural network 98.69 98.81 98.75 98.56
Six-dimensional convolutional neural network 98.75 99.25 99 98.85

Table 3: Results of epoch-based classification

Method Precision (%) Recall (%) F1_score (%) Accuracy (%)
Four-dimensional convolutional neural network 98.39 100 99.19 99.17
Six-dimensional convolutional neural network 98.39 100 99.19 99.17

Table 4: Results of subject-based classification
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Table 5 shows comparing the proposed 
methods with similar previous works using 
EEG to diagnose ADHD. Moreover, in the cur-
rent study, the dataset consists of 121 subjects, 
including 60 healthy and 61 ADHD children, 
which is significantly larger than mostly those 
used in other works. The accuracy of subject-
based classification in the proposed method is 
99.17%, comparable with other works.

Conclusion
In this paper, two architectures are presented 

for high dimensional convolutional networks 
to classify ADHD and normal children using 
EEG connectivity. The proposed methods use 
4D and 6D connectivity tensors as convolu-
tional neural network input, with a CNN archi-
tecture designed for better adjacent channels 
connectivity. Both of the proposed 4D and 
6D CNNs could classify ADHD and normal 
children with 100% recall, 98.39% precision, 
and 99.17% accuracy, i.e. the proposed clas-
sifiers can successfully diagnose ADHD, and 
discriminate the ADHD and normal children 
significantly. In the future, we would study 
neural source-space methods in combination 

with the proposed method.
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