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Introduction

Pancreatic ductal adenocarcinoma (PDAC), constituting 85% of 
pancreatic cancers, is an aggressive gastrointestinal (GI) malig-
nancy with a high mortality rate and is also the second most com-

mon GI malignancy after colorectal cancer [1, 2]. In the early stages 
of the disease, diagnosis is complicated due to insufficient symptoms. 
Therefore, at the time of diagnosis, most patients suffer from the ad-
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ABSTRACT
Background: Pancreatic ductal adenocarcinoma (PDAC) is the most prevalent type 
of pancreas cancer with a high mortality rate and its staging is highly dependent on the 
extent of involvement between the tumor and surrounding vessels, facilitating treat-
ment response assessment in PDAC. 
Objective: This study aims at detecting and visualizing the tumor region and the 
surrounding vessels in PDAC CT scan since, despite the tumors in other abdominal 
organs, clear detection of PDAC is highly difficult.
Material and Methods: This retrospective study consists of three stages: 1) a 
patch-based algorithm for differentiation between tumor region and healthy tissue us-
ing multi-scale texture analysis along with L1-SVM (Support Vector Machine) classi-
fier, 2) a voting-based approach, developed on a standard logistic function, to mitigate 
false detections, and 3) 3D visualization of the tumor and the surrounding vessels 
using ITK-SNAP software. 
Results: The results demonstrate that multi-scale texture analysis strikes a balance 
between recall and precision in tumor and healthy tissue differentiation with an overall 
accuracy of 0.78±0.12 and a sensitivity of 0.90±0.09 in PDAC.  
Conclusion: Multi-scale texture analysis using statistical and wavelet-based fea-
tures along with L1-SVM can be employed to differentiate between healthy and pan-
creatic tissues. Besides, 3D visualization of the tumor region and surrounding vessels 
can facilitate the assessment of treatment response in PDAC. However, the 3D visual-
ization software must be further developed for integrating with clinical applications.
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vanced stage of disease, leading to an overall 
5-year survival rate of 8%. The only potential-
ly curative treatment is surgery; however, only 
10–20% of patients have resectable tumors at 
the time of presentation. Currently, neoadju-
vant chemotherapy with or without radiother-
apy is used in patients with locally advanced 
and borderline PDAC [1], resulting in the 
best chance of survival. Pre and post-therapy 
evaluation of PDAC is the most critical factor 
for resectability assessment and decision on a 
treatment plan; however, identifying the exact 
border of the tumor region is complicated [3]. 

PDAC staging is highly dependent on the in-
volvement extent of the tumor and surround-
ing vessels such as the superior mesenteric ar-
tery (SMA), superior mesenteric vein (SMV), 
and portal vein. 3D visualization of the tumor 
and surrounding vessels can help assess treat-
ment response in PDAC. To achieve this, ac-
curate differentiation between tumor mass and 
healthy tissue is a crucial factor. 

Tissue biopsy is the gold standard for evalu-
ating PDAC; however, the biopsy is an inva-
sive procedure with possible complications. 
Currently, CT-angiography is the most com-
mon modality for the evaluation of PDAC 
patients [2, 4, 5], although the sensitivity and 
specificity of these non-invasive techniques 
still stay insufficient [6]. Besides, in spite of 
the tumors of other abdominal organs, PDAC 
is appeared like a shadow, resulting in a diffi-
cult detection of the tumor borders [7]. 

New techniques such as CT texture analy-
sis (CTTA) have been proposed to address the 
limitations mentioned above and assist physi-
cians in better management of the PDAC [1, 4, 
8, 9]. CTTA can capture pixel or voxel gray-
level variations and distributions within the 
image, provide a semi-quantitative method for 
evaluating the heterogeneity within a tumor, 
and is also capable of predicting prognosis 
and survival outcomes in non-small cell lung 
cancer, esophageal cancer, colon cancer, and 
metastatic renal cell carcinoma [10-13]. 

The two most popular sets of texture-based 

features are statistical and multi-resolution 
features. The first set consists of textural de-
scriptors such as first-order statistical (FOS) 
features, gray-level co-occurrence matrix 
(GLCM) [14], gray-level run-length matrix 
(GLRLM) [15], local binary patterns (LBP) 
[16], and Law’s energy [17], reflecting the re-
lationship between the intensity of two image 
pixels or groups of pixels and estimating the 
first and second-order statistic features. The 
second set comprises wavelet-based features 
such as discrete wavelet transform (DWT) 
[18], Gabor wavelet [19], and dual-tree com-
plex wavelet (DTCWT) [20], capturing scale 
and orientation information in the spatial do-
main as well as the frequency content. More-
over, several studies have tried to combine sta-
tistical and multi-resolution features (GLCM+ 
DTCWT, LBP+DTCWT) to achieve effective 
features [21, 22]. 

In recent studies, CT texture features have 
been used for predicting survival in patients 
with PDAC [4, 6, 9, 23-27]. Ciaravino et al. 
[9] extracted simple texture features in down-
stage PDAC for surgery after Chemotherapy 
and CT texture features are proposed for as-
sessing treatment response [1]. In [28], texture 
features were obtained from Endoscopic ultra-
sound (EUS) images of the PDAC for differen-
tial diagnosis between pancreatic and normal 
tissues using a combination of M-band wave-
let and fractal features, and a support vector 
machine (SVM) classifier. Marconi et al. [7] 
used a fuzzy logic system for discriminating 
between tumor and healthy tissues using a 
Multi-Detector CT. Zhu et al. [29] proposed 
a system for screening PDAC via deep neural 
networks and used multi-scale segmentation 
for classifying normal and abnormal (PDAC) 
pancreas. Chu et al. [30] used radiomics fea-
tures for classifying PDAC and normal cases. 

This work proposed a method for segmenta-
tion and 3D visualization of tumor region and 
surrounding vessels in PDAC in the follow-
ing three stages: 1) PDAC and normal tissue 
are discriminated using texture analysis of 
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CT images. Multi-scale feature extraction is 
used along with the L1-SVM classifier to deal 
with tumors of various sizes. Three different 
image patch sizes were used as the result of 
a trade-off between 1- contributing valuable 
information by each patch for extracting dis-
criminant features, creating a tendency toward 
using bigger patch sizes and 2- availability of 
sufficient data patches, motivating extracting 
smaller patches, resulting in detecting small 
tumors and a balance between recall and preci-
sion; 2) vessels are segmented using 3D active 
contours; 3) the tumor region and surrounding 
vessels are visualized using ITK-SNAP soft-
ware.

Material and Methods
In this retrospective study, multi-slice CT 

scans of 10 patients with pathologically prov-
en adenocarcinoma of the pancreas were en-
rolled. CT scans were acquired prior to ob-
taining the tissue sample by percutaneous 
core needle biopsy or a fine needle aspiration 
(FNA) using endosonography (EUS). All im-
aging was performed at a radiology depart-
ment of Shariati Hospital, Tehran University 
of Medical Sciences, using a 16-detector-row 

CT scanner (Somatom Emotion, Siemens, Er-
langen, Germany) with confirming the study 
protocol by the Local Ethics Committee of 
Shariati Hospital. Oral contrast material was 
administered orally 90 to 120 min prior to the 
exam. The scans included non-enhanced CT 
of the abdomen, contrast-enhanced pancre-
atic parenchymal phase (40–45 s) CT of the 
abdomen, and portal phase (70 s) CT of the 
abdomen and pelvis. All patients received an 
intravenous injection of 1.5 ml per kilogram 
of body weight of an iodinated contrast agent 
(Visipaque 320 mg I/ml; GE Healthcare, Lit-
tle Chalfont, England) at a rate of 3.5 mL/sec 
(maximum total amount of 150 mL). Images 
were obtained craniocaudally with thin col-
limation (1.5 mm) and other scan parameters 
were section thickness (3 mm), voltage (120 
Kv), and effective tube current time charge 
(200–250 mAs). Two experienced abdominal 
radiologists manually segmented the pancreas 
on CT images in each slice.

Tumor/normal Tissue Differentiation
The proposed approaches for differentiation 

between tumor region and normal tissue are 
summarized in Figure 1. All algorithms were 

Figure 1: Block Diagram of the proposed method for differentiation between tumor region and 
normal tissue
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implemented using Matlab R2019a (Math-
works Inc, USA) software.
Preprocessing
The preprocessing stage of training data 

consists of contrast enhancement, manual seg-
mentation of pancreas and tumor, and normal-
ization. In quantitative texture analysis, image 
intensity normalization is necessary [23, 31]. 
Therefore, the pixels within each ROI were 
normalized using the following equation:

( )
( )

 n

I mean I
I

std I
−

=                                        (1)

where I and In are original and normalized 
images, mean(I) and std(I) represent the aver-
age and standard deviation of each data, re-
spectively.
Multi-scale feature extraction in a 

training phase
For each CT image, the pancreas and tumor 

regions were extracted by two experienced ra-
diologists. Since texture descriptors are sensi-
tive to ROI size, patch size plays an important 
role in estimating reliable features. In addition, 
given that tumors appear in diverse sizes and 
shapes, a multi-scale feature extraction meth-
od was adopted. Three image patch sizes, i.e., 
16×16, 24×24, and 32×32, with an overlap of 
66% were selected in the result of a trade-off 
between contributing valuable information by 
each patch to extract discriminant features, 
creating a tendency toward using bigger patch 
sizes and availability of sufficient data patches, 
motivating extracting smaller patches. In the 
feature extraction stage, statistical and wave-
let-based features are used. Statistical features 
include statistical moments, GLCM, LBP, and 
LAW’s features. Meanwhile, wavelet-based 
features consist of DWT, Gabor, and DTCWT. 
Moreover, we combined statistical and wave-
let-based features namely, GLCM+DTCWT 
and DTCWT+LBP. 

Four orientations (θ=0°, 45°, 90°, 135°), 
four distances (d=1, 2, 3, 4), and quantization 
levels of 4, 8, 16, 25, and 32 were examined 
for extracting GLCM features, leading to 16 
GLCMs for each ROI. Then 17 features men-

tioned in section 2.3 were extracted and a 
subset of best features were nominated based 
on the classifier performance. Applying law’s 
method with a window size of 3 and kernels 
with a length of 5, we obtained 9 energy maps. 
Then FOS features are extracted from these 
maps. 

Multiple descriptors were used to implement 
LBP due to diversifying the number of sur-
rounding pixels (P), the neighborhood radius 
(R), and cell size. To build the final feature 
vector, the obtained data by concatenating his-
tograms of single-scale analysis were com-
bined. Based on a trade-off between sensitivity 
and specificity of the L1-SVM classifier, 

riu2
10,2LBP  with cell sizes of 12 and 14, riu2

10,3LBP  
with a cell size of 14 and riu2

12,2LBP  with a cell 
size of 14 were used as LBP features. DWTs 
were computed with 17 different wavelet fil-
ters such as daubchis, symlet, and coiflet. 
Wavelet decompositions calculated in two lev-
els are also examined in search on effective 
features. Gabor filters were applied with 5 
scales and 8 orientations to calculate the Ga-
bor features [19] and energy features were de-
termined for each sub-image. Furthermore, 
1-level DTCWT was also used to decompose 
the images into 12 high pass sub-bands (6 real 
and 6 imaginary). In addition to the FOS fea-
tures extracted from wavelets, second-order 
features were also extracted to attain dominant 
features within large scales. Thus, 1-level 
DTCWT+GLCM and 1-level DTCWT+LBP 
are used for feature extraction; while LBP fea-
tures were extracted from real low-pass sub-
image of DTCWT, GLCM features were ex-
tracted from the real high-pass sub-image of 
DTCWT [21, 22]. After checking all possible 
combinations of mentioned features, the best 
subsets as final feature vectors are nominated 
using classifier performance (Figure 2).
Feature Selection and Classification
For feature dimensionality reduction and 

classification, two approaches were examined, 
including 1) principal component analysis 
(PCA) along with SVM (linear and RBF ker-
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nels), KNN, and decision tree classifiers and 
2) selecting features using L1-SVM within the 
classification framework via L1-norm penal-
ized sparse representations [32]. The standard 
SVM is used for robust performance in binary 
classification problems; however, it has been 
shown that L1- SVM may offer some advan-
tages over the standard SVM [32]. A set of 
training data S={(x1,y1),(x2,y2),…,(xN ,yN)}, 
where N is the number of input data, 

   N Nw l
Nx R ×∈  is the 2D ROIs, and { }0,1Ny ∈  is 

the label (0 for normal patches and 1 for tu-
moral patches). The goal of the current study 
is to design a model M:y=f(x) to predict the 
label for each testing patch. In L1-SVM, which 
is an equivalent Lagrange version of the opti-
mization problem, ridge penalty is replaced 
with lasso penalty as follows: 

( )
0 , 0 1

1 1

1
qn

w w i j j i
i j

min y w w h x wλ
= = +

  
− + +  

   
∑ ∑  (2)

where λ is regularization parameter and  
D={h1(x),…,hq(x)} is a dictionary of basic 
functions and 

1
w  can be presented as recip-

rocal of the geometric margin. 
Lasso penalty shrinks fitted coefficients to-

ward zero, leading to a reduction in the coeffi-
cient’s variance. Moreover, because of the L1 
nature of the penalty, some of the coefficients 
(wj’s) would finally be exactly zero. There-
fore, the lasso penalty shows a kind of feature 

selection effect. A wide range of λ values was 
tested on training data to achieve a model per-
forming well on the test data. To evaluate the 
discrimination results, three common perfor-
mance criteria were used namely Dice coef-
ficient, specificity, and sensitivity, defined as 
follows:

TPSensitivity
TP FN

=
+

                               (3)

 TNSpecificity
TN FP

=
+

                              (4)

 
TN
TP TNAccuracy

TP FP FN
+

=
+ + +

              (5)

Voting –based Multi-scale Pixel La-
belling

In this stage, we should discriminate between 
tumor and healthy tissues in test data; provid-
ing that the best models for the classifiers with 
patch sizes 16, 24, and 32, namely C16, C24, 
and C32, were obtained in the previous stage. 
A sliding window sweeps the whole pancreas 
tissue pixel by pixel. Using the developed fea-
ture extraction and classification models, the 
image patch is classified as tumoral or normal 
and the center pixel of the patch is labeled ac-
cordingly and the processes are repeated for 
each image patch size. Each of the three ob-
tained classifiers should contribute to the final 
decision according to their performance to 
predict the final label of a patch. Therefore, a

 

Figure 2: Diagram of extracted features
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weighting vector w=2, 1, 0.5 was defined con-
sisting of weights for C32, C24, and C16, respec-
tively. Thus, the label obtained from classifier 
C32 and its related weight is assigned to the 
corresponding pixel. If C32 is unable to label 
the pixel, it refers to C24 and its correspond-
ing weight; otherwise, the label and weight 
are specified using C16. Furthermore, to solve 
the problem of label fluctuations along with 
CT slices and improve the classifying perfor-
mance of the tissue, a novel was adopted but 
the simple approach, using the information 
provided by 3 adjacent slices, as described be-
low.

A function d(i,j) is defined as the Euclidean 
distance between i-th pixel and j-th pixel in 
each CT slice.

( ) ( ),  
,   

 
distance i j i j

d i j
epsilon i j

 ≠
= 

=
                  (6)

Besides, we define two measures for the to-
tal influence of neighboring normal/tumoral 
pixels on the i-th pixel class prediction as en-
ergy functions E0(i) and E1(i):

( )
( )

( )1
0 41

1

1
 ,

s

s

n

ss
j s

E i w j
d i j=−

=

= ×∑ ∑              (7)

( )
( )

( )1
1 41

1

1
 ,

s

s

t

ss
j s

E i w j
d i j=−

=

= ×∑ ∑               (8)

where ns/ts is the number of neighboring nor-
mal/tumoral pixels at slice s, and w(js) is the 
corresponding label weight of the j-th pixel in 
slice s, where s represents the same (0), upper 
(1), and lower (-1) slices relative to the slice of 
the pixel under consideration. Now, the prob-
ability of pixel i for tumoral/normal is calcu-
lated using a logistic function. 

( ) ( )
1

1t E iP i
e

=
+

                                            (9)

( ) ( )1n tP i P i= −                                           (10)

where E(i) is defined as ( ) ( ) ( )1 0 E i E i E i=− + .

The final label of the i-th pixel is then as-
signed as follows:

( ) ( ) ( )   
  

n t
t

Normal if P i P i
L i

Tumoral otherwise
 >

= 


           (11)

Visualization of Tumor and Surround-
ing Vessels

A dependable measurement of the tumor 
and volume of surrounding vessels can help 
monitor the treatment outcome and assist the 
surgeon in decision making and/or its prob-
able subsequent surgical planning. A semi-
automatic 3D active contour method was used 
to segment the vessels. The active contour al-
gorithm [33, 34] is an iterative approach using 
energy forces and constraining separation of 
an ROI. The used method includes two stag-
es: first, the speed function is produced using 
thresholding to obtain foreground/background 
probabilities, and second, an active contour is 
segmented by user-placed initialization seeds 
and g(x) as the edge indicator. Parametric con-
tour C representing the boundary of segment-
ed region evolves according to:

( )  t CC g C k Nα β= +  


                          (12)
where kC represents mean curvature C, N



 is 
the normal vector of the curve, and α and β are 
scalar parameters. 

The above two stages are repeatedly applied 
to the image to segment the vessels. Three 
main vessels, namely SMA, SMV, and portal 
vein are segmented using 3D active contour 
that segmented vessels are merged with im-
ages containing labeled tumoral regions for fi-
nal visualization and 3D rendering using ITK-
SNAP.

Results
This section presents the classification per-

formance and the differentiation between nor-
mal and tumor tissue using CT images, the 
results of the vessel segmentation, and 3D vi-
sualization.

Results of Feature Extraction and 
Classification 

L1-SVM is far better in performance than 
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the other classifiers mentioned for the evalua-
tion criteria. The results of some feature com-
binations for image patch sizes of 32, 24, and 
16 using LI-SVM classifier are shown in Ta-
bles 1, 2, and 3, respectively that best feature 
subsets for each ROI were highlighted as well. 
For comparison purposes, performing other 
classifiers, namely KNN (k=3), decision tree, 
and SVM with Radial basis function (RBF), 
and linear kernels, are evaluated for an image 

patch size of 32 as 0.88, 0.80, 0.85, and 0.88 
respectively.

Results of Voting-based Multi-
scale Pixel Labelling 

As indicated, each image patch was treated 
as a sample and a sliding window was used to 
label each pixel located in the pancreas region. 
Feature selection and classification were used 
along with L1-SVM, conducted for each of 

Feature Accuracy Sensitivity Specificity λ /# of selected features
DTCWT+ Moments 0.947 1 0.909 0.65/11

Gabor 0.690 0.630 0.730 1.25/18
DWT 0.842 1 0.727 0.6/9

GLCM 0.632 0.875 0.455 0.1/2
Multi scale LBP 0.737 0.750 0.727 1.7/18
LAW’S Texture 0.684 1 0.455 1.05/6
DTCWT+GLCM 0.632 0.875 0.455 0.15/4
DTCWT+LBP 0.632 0.875 0.455 0.15/7
GLCM+LBP 0.737 0.750 0.727 0.65/12

DTCWT: Dual-Tree Complex Wavelet Transform, DWT: Discrete Wavelet Transform, GLCM: Gray-Level Co-occurrence Ma-
trix, LBP: Local Binary Pattern, LAW’S: Law is a name

Table 1: Results of feature extraction for an image patch size of 32 pixels using L1-Support Vec-
tor Machine (L1-SVM) 

Feature Accuracy Sensitivity Specificity λ /# of selected features
DTCWT 0.700 0.662 0.724 0.9/18
Gabor 0.576 0.446 0.657 3.2/49
DWT 0.718 0.631 0.771 0.05/6

GLCM 0.618 0.708 0.562 3/26
Multi scale LBP+ 

Moments
0.800 0.708 0.857 1.85/40

LAW’S Texture 0.600 0.849 0.448 2.65/16
DTCWT+GLCM 0.500 0.600 0.438 1.8/81
DTCWT+LBP 0.647 0.708 0.610 1.05/14
GLCM+LBP 0.606 0.800 0.486 1.35/25

DTCWT: Dual-Tree Complex Wavelet Transform, DWT: Discrete Wavelet Transform, GLCM: Gray-Level Co-occurrence Ma-
trix, LBP: Local Binary Pattern, LAW’S: Law is a name 

Table 2: Results of feature extraction for an image patch size of 24 pixels using L1-Support Vec-
tor Machine (L1-SVM) 
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three selected scales. To achieve better results 
in labeling each pixel, the introduced multi-
slice post-processing algorithm was used. 
Figure 3 shows the results of applying this al-

gorithm on three sample pancreas slices. The 
final results of pixel labeling for 16, 24, 32 
patch sizes and the multi-scale labeling with 
and without post-processing are presented in 

Figure 3: Three examples of multi-scale texture-based differentiation of normal and abnormal 
(PDAC) tissues. Blue indicates normal tissue and red presents abnormal tissue. 

Feature Dice Sensitivity Specificity λ /# of selected features
DTCWT(36) 0.610 0.514 0.780 1.9/31

Gabor 0.650 0.190 0.933 0.25/28
DWT 0.669 0.494 0.775 0.95/24

GLCM 0.668 0.494 0.773 2.7/29
Multi scale LBP 0.652 0.400 0.804 0.15/13
LAW’S Texture 0.651 0.531 0.723 0.2/12
DTCWT+GLCM 0.606 0.401 0.730 0.3/79
DTCWT+LBP 0.617 0.418 0.737 0.3/16

GLCM+LBP+ Moments 0.663 0.528 0.744 0.45/28
DTCWT: Dual -Tree Complex Wavelet Transform, DWT: Discrete Wavelet Transform, GLCM: Gray-Level Co-occurrence 
Matrix, LBP: Local Binary Pattern, LAW’S: Law is a name 

Table 3: Results of feature extraction for an image patch size of 16 pixels using L1-Support Vec-
tor Machine (L1-SVM) 
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Table 4.

Results of vessel Segmentation and 
Visualization 

The results of the vessel segmentation using 
semi-automatic 3D active contour with ITK-
SNAP shows that the Dice coefficient in the 
superior mesenteric artery (SMA), superior 

mesenteric vein (SMV), and portal vein seg-
mentation is 0.938, 0.815, and 0.924, respec-
tively. A sample of the 3D visualization out-
come is shown in Figure 4.

Discussion
Pancreatic ductal adenocarcinoma (PDAC), 

the most prevalent type of pancreas cancer, is 

Differentiation between PDAC Mass and Normal Tissue

Method Dice coefficient Recall Precision
Single scale (scale =32) 0.42±0.27 0.32±0.23 0.84±0.26
Single scale (scale =24) 0.70±0.14 0.85±0.015 0.55±0.19
Single scale (scale =16) 0.69±0.12 0.89±0.05 0.57±0.17

Our Proposed Multi scale approach 0.78±0.12 0.90±0.09 0.72±0.20

Table 4: Results of pixel labeling for scales 16, 24, 32, and multi-scale with multi-slice post-
processing

Figure 4: 3D visualization of tumor region and surrounding vessels. Yellow, red, blue, and purple 
mark tumor region mesenteric artery (SMA), superior mesenteric vein (SMV), and portal vein 
respectively. a) Manual segmentation of tumor and surrounding vessels, b) Semi-automatic seg-
mentation of tumor and vessels, c) 3D visualization of manually segmented tumor and vessels, 
and d) 3D visualization of semi-automatically segmented tumor and vessels. Best viewed in color
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an aggressive gastrointestinal (GI) malignan-
cy with a high mortality rate. Since its staging 
is highly dependent on the extent of involve-
ment between the tumor and surrounding 
vessels, 3D visualization of the tumor region 
and surrounding vessels can facilitate the as-
sessment of treatment response in PDAC. For 
this purpose, accurate differentiation between 
tumor mass and healthy tissue is regarded as 
essential.

Some studies have focused on the automatic 
segmentation of the pancreas in normal cases 
[35-38]. Yet, more investigations are needed 
on-demand to satisfy our ambiguity regard-
ing the segmentation of tumor region and sur-
rounding vessels and assist the surgeons in de-
cision making and/or the probable subsequent 
surgical planning. The aim of this study is to 
introduce an algorithm for determining the 
tumoral region of the pancreas and segmen-
tation of vessels along with 3D visualization. 
A multi-slice and -scale CT texture analysis is 
proposed to discriminate between normal and 
abnormal (PDAC) tissues using statistical and 
wavelet-based features. Subsequently, peri-
pancreatic vessels were segmented employ-
ing 3D active contours. Finally, visualization 
and 3D rendering were performed using ITK-
SNAP. 

Considering the available small dataset, a 
patch-based algorithm is proposed for classifi-
cation in which, image patch size plays a cru-
cial role in the differentiation between tumor 
regions and healthy tissues. An appropriate 
image patch size can capture valuable informa-
tion and provide salient features for classifica-
tion. Provided that a small patch size results in 
a low-performance classifier and a large patch 
size causes the borders blurred. A multi-scale 
analysis is done to harvest the benefits of both. 
Image patch sizes ranging from 16 to 32 pix-
els and their corresponding feature combina-
tions were evaluated for selecting appropriate 
scales. Finally, three image patch sizes, i.e. 16 
×16, 24×24, and 32×32 pixels, were used as 
the result of a trade-off between contributing 

valuable information by each patch for ex-
tracting the discreminant features, creating a 
tendency toward using bigger patch sizes and 
availability of sufficient data patches, motivat-
ing extracting smaller patches.

In addition to the features used in previous 
works, new features and combinations of them 
[21-22] were used to improve the classifica-
tion performance. Tables 1, 2, and 3 show the 
results of feature extraction from image patch 
sizes 32, 24, and 16, respectively. Wavelet-
based features show a better performance for 
image patch size 32. Besides, the features of 
DTCWT with level 1 have better results for 
all three patch sizes using L1-SVM. However, 
the features of DTCWT with level 2 were test-
ed with no acceptable results. Among all fil-
ter banks employed for DWT, bior3.1 showed 
the best performance. For feature extraction 
from Gabor wavelet, the energy of sub-bands 
in 5 scales and 8 orientations were calculated. 
Also, all FOS features were tested, but ener-
gy features demonstrated better performance. 
DTCWT outperforms DWT and Gabor. Al-
though Gabor can perform way better by se-
lecting larger λ’s, it needs much more runtime 
for feature extraction compared to DTCWT. 
For image patch size 24, multi-scale LBP is 
effective compared to other methods, and for 
image patch size 16, a combination of single-
scale LBP, GLCM, and statistical moments ex-
hibit the best performance compared to others. 
It can be concluded that local features can be 
extracted using statistical approaches such as 
LBP and GLCM. In DTCWT, the performance 
of the classifier increased with the larger image 
patch sizes. As shown in Table 4, the best pre-
cision is achieved by patch size 32, however 
with a lower level of accuracy and recall. For 
smaller scales, higher levels of accuracy and 
recall are obtained at the expense of lower pre-
cision. Therefore, multi-scale predictions can 
result in a balance between accuracy, recall, 
and precision. Figure 4 shows a voting-based 
approach using logistic function enhances the 
results considerably. Aggregating the informa-
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tion of 3 adjucent slices improves the results, 
especially in detecting small tumors.

To the best of our knowledge, very limited 
studies have investigated the possibility of 
differentiation between normal and tumoral 
(PDAC) tissues using CT images. Previous 
studies on PDAC used simple texture features 
for tasks such as survival rate estimation and 
assessment of treatment response. In [28], the 
authors performed a texture analysis for dis-
criminating normal from pancreatic tissues 
using EUS images and achieved a good sensi-
tivity and specificity. Although the results are 
acceptable, EUS is still considered an invasive 
technique. A recent study [29] on PDAC used 
a segmentation-for-classification approach to 
screen PDAC and searched for tumoral tissues 
on CT images using a large dataset of PDAC. 
Their results on tumor segmentation indicate 
good sensitivity and specificity, but low accu-
racy. 

Furthermore, vessels were segmented using 
3D active contour, and tumor and surround-
ing vessels were visualized in 3D using ITK-
SNAP. Segmented tumor and vessel regions 
can be corrected by a radiologist prior to visu-
alization. Quality evaluation of the proposed 
method relies on the experience of an expert 
radiologist and pathologist. According to the 
large dataset, deep learning can be used for 
better results.

Conclusion
In this paper, an approach was introduced for 

visualizing the tumor and surrounding vessels. 
The healthy and pancreatic tissues were differ-
entiated using multi-scale texture analysis with 
statistical and wavelet-based features and L1-
SVM classifier. The experimental results show 
that multi-scale texture analysis can result in a 
balance between recall and precision. 3D vi-
sualization of tumor region and surrounding 
vessels can facilitate investigating treatment 
response in PDAC; however, the 3D software 
must be further developed to integrate into 
clinical application. Since the limitation of 

this study is a small sample size, data gath-
ering was done for automatically segmenting 
the pancreas and detecting tumoral tissues us-
ing deep learning methods. For the next phase, 
automatically segmenting the vessels without 
laying seed points was conducted as well.
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