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Abstract
Background: Chest computed tomography (CT) plays an 
essential role in diagnosing coronavirus disease 2019 (COVID-
19). However, CT findings are often nonspecific among different 
viral pneumonia conditions. The differentiation between 
COVID-19 and influenza can be challenging when seasonal 
influenza concurs with the COVID-19 pandemic. This study was 
conducted to test the ability of radiomics-artificial intelligence 
(AI) to perform this task.
Methods: In this retrospective study, chest CT images from 47 
patients with COVID-19 (after February 2020) and 19 patients 
with H1N1 influenza (before September 2019) pneumonia were 
collected from three hospitals affiliated with Arak University 
of Medical Sciences, Arak, Iran. All pulmonary lesions were 
segmented on CT images. Multiple radiomics features were 
extracted from the lesions and used to develop support-vector 
machine (SVM), k-nearest neighbor (k-NN), decision tree, neural 
network, adaptive boosting (AdaBoost), and random forest.
Results: The patients with COVID-19 and H1N1 influenza 
were not significantly different in age and sex (P=0.13 and 
0.99, respectively). Nonetheless, the average time between 
initial symptoms/hospitalization and chest CT was shorter in the 
patients with COVID-19 (P=0.001 and 0.01, respectively). After 
the implementation of the inclusion and exclusion criteria, 453 
pulmonary lesions were included in this study. On the harmonized 
features, random forest yielded the highest performance (area 
under the curve=0.97, sensitivity=89%, precision=90%, F1 
score=89%, and classification accuracy=89%).
Conclusion: In our preliminary study, radiomics feature extraction, 
conjoined with AI, especially random forest and neural network, 
appeared to yield very promising results in the differentiation 
between COVID-19 and H1N1 influenza on chest CT.
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What’s Known

• There is an overlap between 
COVID-19 and influenza in clinical 
presentation. Seasonal influenza may 
have happened concurrently with the 
COVID-19 pandemic. The polymerase 
chain reaction test is robust for 
influenza, but has low sensitivity for 
COVID-19. Any technique that can 
differentiate between these infections 
could improve patient management.

What’s New

• Radiomics feature extraction, 
conjoined with modern artificial 
intelligence, has high accuracy in 
differentiating COVID-19 from H1N1 
influenza on chest computed tomography.
• Radiomics-artificial intelligence 
techniques can improve the accuracy of 
computed tomography to differentiate 
COVID-19 from influenza and empower 
radiologists with limited experience in 
chest imaging.

Original Article

Introduction

The coronavirus disease 2019 (COVID-19) pandemic is the 
first pandemic of the third decade of the 21st century. The first 
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cases with COVID-19 infection were detected 
in the Chinese city of Wuhan, in December 
2019, presenting with fever, cough, pneumonia, 
and lymphopenia, and unamenable to usual 
antibiotics. The etiology was soon detected to be 
a novel coronavirus, SARS-CoV-2. Despite robust 
measurements, the infection became pandemic 
in less than three months, with more than 41 
million infected cases and over 1.1 million deaths 
by the end of October 2020.1, 2 Since then, the 
differentiation between COVID-19 and influenza 
has remained critical for patient management. 
Currently, the gold-standard diagnostic test for 
COVID-19 is considered to be the polymerase 
chain reaction (PCR) test. Nonetheless, not 
only is this test unavailable even in many 
developed countries, but also it is associated 
with questionable accuracy. In this context, chest 
computed tomography (CT) scanning continues 
to be of vital importance for diagnosis. Chest CT 
has a high sensitivity of about 95% to 97% in the 
detection of COVID-19 pneumonia.3, 4

Despite the very promising sensitivity of 
chest CT to detect COVID-19 infection, the major 
limitation of this modality is still its low specificity.5 
Currently, radiologists with limited chest imaging 
experience cannot differentiate COVID-19 from 
other viral or bacterial pneumonia conditions with 
high accuracy. Hence, any technique that can 
improve the specificity of chest CT can enhance 
their performance. The low specificity of chest CT 
to differentiate this pneumonia can be partially 
attributed to the inability of the human eye to detect 
subtle radiology findings. Generally, the human 
eye can identify a few radiology features such as 
the size, density, borders, and enhancement of 
lesions. In this context, radiomics has proven itself 
as a rapidly evolving research field in radiology. 
The basic concept behind radiomics is the 
ability of computers and software to detect many 
more radiology features from medical images. 
In radiomics, the region of interest is generally 
selected and segmented by a radiologist in order 
that many features can be extracted from the 
segmented area. The extracted feature is then 
analyzed to detect the best diagnostic feature 
before artificial intelligence (AI) models are 
developed for these features.6

In this study, we sought to determine whether 
radiomics in tandem with different AI models 
could improve the specificity of chest CT to 
differentiate COVID-19 pneumonia from H1N1 
pneumonia.

Patients and Methods 

Study Population
This retrospective study was approved by the 

Ethics Committee of Arak University of Medical 
Sciences (No. IR.ARAKMU.REC.1398.339). 
Written informed consent was obtained from 
each patient upon admission. The entire study 
population received standards of care based 
on the university and national guidelines. The 
medical records of 850 patients with acute 
respiratory symptoms admitted to three hospitals 
affiliated with Arak University of Medical 
Sciences, Arak, Iran, were reviewed. Patients 
with COVID-19 (after February 2020) and H1N1 
influenza-induced pneumonia (before September 
2019), who underwent chest CT were included 
in this study. The inclusion criterion for patients 
with COVID-19 was a positive PCR test. The 
quantitative reverse transcription-polymerase 
chain reaction (RT-qPCR) assay was performed 
using the 2019-nCoV Nucleic Acid Diagnostic Kit 
(Sansure Biotech, Changsha, China), in keeping 
with the manufacturer’s protocol, in LightCycler 
96 instruments (Roche Diagnostics, Mannheim, 
Germany). For patients with H1N1 influenza, the 
inclusion criterion was a positive respiratory viral 
panel for influenza according to the RT-qPCR 
assay. For H1N1 cohort, only patients before 
September 2019 were selected to avoid any 
overlap between COVID-19 and influenza. 
Known patients with chronic lung disease were 
excluded. Finally, 66 patients, comprising 47 
cases with COVID-19 and 19 cases with H1N1 
influenza, were included for the final analysis. 
For the influenza cohort, all PCR-positive and 
inpatient cases in the mentioned university data 
set were selected. The same data set had a large 
population of cases with COVID-19. However, 
only 47 patients with COVID-19 were included to 
avoid class imbalance. 

CT Images 
All the studied patients underwent chest CT 

with the standard lung protocol (peak kilovoltage 
[kVp]=100–110, milliampere-seconds [mAs]=24–
40, thickness=<1.5 mm, pitch factor=0.8, and 
matrix=512×512). CT scanning was performed 
with Siemens (SOMATOM Emotion 16 Slice 
[DE], Germany), Toshiba (Aquilion 16 Slice, 
Japan), and GE (Optima 58, 32 Slice, USA) 
scanners. 

Pulmonary Lesion Segmentation
The chest CT images of the study population 

were evaluated by a radiologist (HS) with 15 
years of clinical imaging experience, who 
was blind to the patients’ diagnoses. After the 
initial assessment, chest CT images with poor 
quality and motion artifacts were excluded. 
Pulmonary lesions in the chest CT images in 
the lung window were then segmented by the 
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same radiologist using 3D Slicer.7 If a part of a 
lesion was ground-glass opacification/opacity, 
and the other part was consolidation, the 
lesion was segmented as two different lesions. 
Patchy lesions attaching to each other were 
considered a single lesion. Axial CT was used 
for segmentation. Each lesion was segmented 
in multiple axial slices, and the segmented 
areas were added to obtain a 3D volume for 
each lesion. The one-third central portion of 
the bronchovascular structures was avoided 
during the segmentation, whereas the two-thirds 
peripheral portions of the bronchovascular 
structures were included within the segmented 
lesions, if they were encased by parenchymal 
opacities. Pulmonary fissures were also avoided 
during the segmentation, and large pulmonary 
lesions were limited to a single pulmonary lobe. 
Chronic lesions such as calcifications, fibrosis, 
cavities, pleural effusions, lymphadenopathy, 
and atelectasis were diagnosed visually by the 
radiologist at the segmentation time and were 
not included in the segmentation.  

Feature Extraction 
Feature extraction was performed with 3D 

Slicer7 and PyRadiomics Library8 (resample 

size=2,2,2 and binWidth=64). For each lesion, 
120 features were extracted (table 1). The 
extracted features comprised (Shape 2D and 
Shape 3D) first-order gray-level dependence 
matrix (GLDM), grey-level co-occurrence 
matrix (GLCM), gray-level run-length matrix 
(GLRLM), gray-level size-zone matrix (GLSZM), 
and neighboring gray-tone-difference matrix 
(NGTDM). Additionally, redundancy maximum 
relevance, least absolute shrinkage, and 
selection operator (LASSO), and principal 
component analysis (PCA) were used for feature 
selection and reduction. 

Machine-Learning Model Development 
Different binary classifier machine-learning 

(ML) models, comprising support-vector 
machine (SVM), decision tree, k-nearest 
neighbor (k-NN), Naïve Bayes, adaptive boosting 
(AdaBoost), random forest, and neural network 
were developed using the extracted features to 
classify each pulmonary lesion into COVID-19 
and H1N1 influenza groups. 

The performance of the models was tested 
via 10-fold cross-validation and leave-one-
out cross-validation analyses on Orange: Data 
Mining Toolbox in Python.9 Additionally, the 

Table 1: The list of radiomics features used in this study
Feature Classes Features
First-Order 
Features

Energy, Total Energy, Entropy, Minimum, 10th Percentile, 90th Percentile, Maximum, Mean, Median, 
Interquartile Range, Range, Mean Absolute Deviation, Robust Mean Absolute Deviation, Root Mean 
Squared, Standard Deviation, Skewness, Kurtosis, Variance, and Uniformity

Shape Features 
(3D)

Mesh Volume, Voxel Volume, Surface Area, Surface Area to Volume Ratio, Sphericity Compactness, 
Spherical Disproportion, Maximum 3D Diameter, Maximum 2D Diameter (Slice), Maximum 2D Diameter, 
Maximum 2D Diameter, Major Axis Length, Minor Axis Length, Least Axis Length, Elongation, and 
Flatness

Shape Features 
(2D)

Mesh Surface, Pixel Surface, Perimeter, Perimeter to Surface Ratio, Sphericity Spherical Disproportion, 
Maximum 2D Diameter, Major Axis Length, Minor Axis Length, and Elongation

Gray-Level 
Co-occurrence 
Matrix Features

Autocorrelation, Joint Average, Cluster Prominence, Cluster Shade, Cluster Tendency, Contrast, 
Correlation, Difference Average, Difference Entropy, Difference Variance, Joint Energy, Joint Entropy, 
Informational Measure of Correlation 1, Informational Measure of Correlation 2, Inverse Difference 
Moment, Maximal Correlation Coefficient, Inverse Difference Moment Normalized, Inverse Difference, 
Inverse Difference Normalized, Inverse Variance, Maximum Probability, Sum Average, Sum Entropy, and 
Sum of Squares

Gray-Level 
Size-Zone Matrix 
Features

Small-Area Emphasis, Large-Area Emphasis,  Gray-Level Nonuniformity, Gray-Level Nonuniformity 
Normalized, Size-Zone Nonuniformity, Size-Zone Nonuniformity Normalized, Zone Percentage, Gray-
Level Variance, Zone Variance, Zone Entropy, Low Gray-Level Zone Emphasis, High Gray-Level Zone 
Emphasis, Small-Area  Low Gray-Level Emphasis, Small-Area  High Gray-Level Emphasis, Large-Area 
Low Gray-Level Emphasis, and Large-Area High Gray-Level Emphasis

Gray-Level Run-
Length Matrix 
Features

Short-Run Emphasis, Long-Run Emphasis, Gray-Level Nonuniformity, Gray-Level Nonuniformity 
Normalized, Run Length Nonuniformity, Run Length Nonuniformity Normalized, Run Percentage, Gray-
Level Variance, Run Variance, Run Entropy, Low Gray-Level Run Emphasis, High Gray-Level Run 
Emphasis, Short-Run Low Gray-Level Emphasis, Short-Run High Gray-Level Emphasis, Long-Run Low 
Gray-Level Emphasis, and Long-Run High Gray-Level  Emphasis 

Neighboring Gray-
Tone-Difference 
Matrix Features

Coarseness, Contrast, Busyness, Complexity, and Strength

Gray-Level 
Dependence Matrix 
Features

Small Dependence Emphasis, Large Dependence Emphasis, Gray-Level Nonuniformity, Dependence 
Nonuniformity, Dependence Nonuniformity Normalized, Gray-Level Variance, Dependence Variance, 
Dependence Entropy, Low Gray-Level Emphasis, High Gray-Level Emphasis, Small Dependence Low 
Gray-Level Emphasis, Small Dependence High Gray-Level Emphasis, Large Dependence Low Gray-
Level Emphasis, and Large Dependence High Gray-Level Emphasis
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confusion matrix of the models was evaluated. 
ML model training and testing were repeated 
twice: once with the raw extracted features and 
then with the harmonized features. Feature 
harmonization was performed to avoid the effect 
of the different CT scanners on the radiomics 
result.10 The features were harmonized by 
using the combatting batch effect (ComBat) 
harmonization algorithm. 

Statistical Analysis 
The differences between H1N1 influenza 

and COVID-19 groups concerning numerical 
variables were assessed by using the 
independent samples t test. The Chi square test 
was utilized to compare categorical variables 
between these two groups (sex). A P value 
of less than 0.05 was considered significant. 
The statistical analyses were performed with 
SPSS, version 21. The method of this study is 
summarized in figure 1. 

Results

Seventy-three patients with COVID-19 and H1N1 
influenza-induced pneumonia were included in 
this study. After the initial evaluation of the study 
population’s CT images, seven patients were 
excluded because of motion artifacts or poor-
quality images. Sixty-six patients, comprising 

47 cases with COVID-19 and 19 cases with 
H1N1 influenza were enrolled in this study. The 
demographic data of these patients are provided 
in table 2. Regarding CT scanning on the 
patients with influenza, the Siemens SOMATOM 
Emotion 16 Slice (DE) Scanner, and the Toshiba 
Aquilion 16 Slice CT Scanner were used for 16 
and three patients, correspondingly. Concerning 
CT scanning on the patients with COVID-19, 
the Siemens SOMATOM Emotion 16 Slice 
(DE) Scanner, the Toshiba Aquilion 16 Slice CT 
Scanner, and the GE Optima 58, 32 Slice Scanner 
were employed for 14, 23, and 10 patients, 
respectively. The patients in the COVID-19 and 
H1N1 influenza groups were not significantly 
different in terms of age and sex (P=0.13 and 
0.99, respectively). However, the average time 
between initial symptoms/hospitalization and 
chest CT was shorter in the COVID-19 group 
(P=0.001 and 0.01, respectively) (table 2).

Totally, 453 pulmonary lesions were 
segmented: 306 COVID-19 lesions and 147 
influenza lesions. In the first step, 120 features 
were extracted from each pulmonary lesion. All 
120 features were utilized to train state-of-the-
art ML models. The models were Naïve Bayes, 
SVM, k-NN (number of neighbors=5), decision 
tree, neural network (different networks were 
developed with different numbers of layers: 10, 
25, 50, 60, 75, and 100), AdaBoost (number 

92 patients with suspected H1N1 influenza (from 2017 to September 2019) and 750 patients with
suspected COVID-19 (February–April 2020) were enrolled.

Inclusion criteria: Influenza and COVID-19 are documented by positive PCR. There is chest CT with the
lung protocol and thickness less than 1.5 mm.

73 patients with COVID-19 and
influenza were selected.

66 patients were included in the final
analysis (19 influenzas and 47 COVID-

19).

7 patients were excluded
because of motion

artifacts on CT.

453 pulmonary lesions were segmented
(3D segmentation).

120 features were extracted for each
pulmonary lesion.

The extracted features were
harmonized by the implementation

of ComBat harmonization.

Different ML models were
trained on the extracted

features.

Different ML models were
trained on the harmonized

extracted features.

The performance of each
model was evaluated by
10-fold cross-validation.

Figure 1: This image depicts the study design. Influenza and COVID-19 are documented by positive PCR. The chest CT images 
were obtained with the lung protocol and thickness of less than 1.5 mm. PCR: Polymerase chain reaction; CT: Computed 
tomography; ML: Machine learning
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of estimators=50 and learning rate=100,000), 
and random forest (number of trees=11). The 
application of LASSO, PCA, and redundancy 
maximum relevance did not change ML 
performance, so all the features were used for the 
final ML development. Nevertheless, the feature 
selection techniques suggested that the size of 
the lesion (shape), large dependence emphasis 
(GLDM), large-area low gray-level emphasis 
(GLSZM), and gray-level nonuniformity (GLSZM) 
were the most important features apropos of 
correlation with the class output. With the use of 
the raw features, the neural network (100 layers) 
had the highest area under the curve (AUC). The 
AUC of the neural network was 0.87 and 0.87 for 
the 10-fold cross-validation and leave-one-out 
cross-validation analyses, respectively. These 
numbers were 0.79 and 0.86 for decision tree, 

0.83 and 0.84 for SVM, 0.85 and 0.83 for random 
forest, 0.85 and 0.79 for AdaBoost, 0.7 and 0.7 
for Naïve Bayes, and 0.57 and 0.55 for k-NN. The 
performance of these models is summarized in 
table 3. The training was repeated once more on 
the harmonized features to resolve the possible 
effect of the different scanners on the extracted 
features and the subsequent classification 
models. The 10-fold cross-validation and leave-
one-out cross-validation analyses of these 
models demonstrated improved classification 
by using the harmonized features. This time, the 
random forest had the highest performance with 
an AUC of 0.97 for 10-fold cross-validation (table 
4), and 0.969 for leave-one-out cross-validation. 
These numbers were 0.91 and 0.93 for neural 
network (100 layers), 0.91 and 0.9 for AdaBoost, 
0.89 and 0.89 for decision tree, 0.85 and 0.85 

Table 2: The demographic information of patients with COVID-19 and H1N1 influenza
Influenza (n=19) COVID-19 (n=47) P value

Age (mean±SD) 65.89±15.50 59.30±16.33 0.13
Sex Female 11 (16.7%) 16 (24.2%) 0.99

Male 8 (12.1%) 31 (47.0%)
Average time between initial symptoms and CT (d) 7.5±5.02 3.7±3.38 0.001
Average time between hospitalization and CT (d) 1.9±2.34 1.1±0.4 0.01
The independent samples t test was used to evaluate the differences between H1N1 influenza and COVID-19 samples for 
numerical variables (age, the average time between the initial symptoms and CT, and the average time between hospitalization 
and CT). The Chi square test was used to compare categorical variables between these two groups (sex). A P value of less than 
0.05 was considered significant. CT: Computed tomography

Table 3: The performance of the machine-learning models for the classification of pulmonary lesions to COVID-19 and H1N1 
influenza
Model AUC ** Classification 

Accuracy (%)
F1 Score (%) Precision (%) Sensitivity (%)

Neural Network 0.874 83.01 82.50 82.22 83.02
Random Forest 0.858 81.80 78.32 79.80 81.80
AdaBoost 0.858 90.60 90.60 90.61 90.61
SVM 0.832 81.80 76.11 83.40 81.80
Decision Tree 0.798 89.01 88.70 88.61 89.02
Naive Bayes 0.702 65.10 68.21 76.61 65.10
k-NN 0.571 78.62 74.32 74.01 78.60
The 10-fold cross-validation was used to measure the performance of the machine-learning models. AdaBoost: Adaptive 
boosting; SVM: Support-vector machine; k-NN: k-nearest neighbors; AUC: Area under the curve. **AUC ranges in value from 
0 to 1

Table 4: The performance of the machine-learning models for the classification of pulmonary lesions to COVID-19 and H1N1 
influenza after the implementation of ComBat harmonization 
Model AUC ** Classification 

Accuracy (%)
F1 Score (%) Precision (%) Sensitivity (%)

Random Forest 0.974 89.40 88.91 90.20 89.40
Neural Network 0.914 84.80 84.61 84.61 84.81
AdaBoost 0.911 92.31 92.32 92.30 92.32
Decision Tree 0.894 91.42 91.40 91.41 91.40
Naive Bayes 0.851 78.20 78.50 79.12 78.21
SVM 0.802 76.40 76.11 76.02 76.40
k-NN 0.642 65.60 64.80 64.20 65.60
The 10-fold cross-validation was used to measure the performance of the machine-learning models. AdaBoost: Adaptive 
boosting; SVM: Support-vector machine; k-NN: k-nearest neighbors; AUC: Area under the curve. **AUC ranges in value from 
0 to 1
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for Naïve Bayes, 0.8 and 0.78 for SVM, and 0.64 
and 0.64 for k-NN. Our best model (random 
forest) accurately predicted 304 COVID-19 
lesions out of 307 lesions with a false-negative 
rate of less than 1% on the confusion matrix. 
The classification performance of these models 
is presented in table 4. 

Discussion

In this study, by making use of the radiomics 
techniques and different ML models, we 
succeeded in differentiating pulmonary lesions 
caused by COVID-19 from those caused by 
H1N1 influenza with high accuracy. Our study 
is one of the first investigations on the role of 
radiomics in infection (COVID-19 in our study). It 
seems that radiomics, which was first developed 
mainly in oncologic imaging, could also be useful 
in diagnosing infectious diseases.

So far, radiomics has had very few 
applications in pneumonia in that it has been 
mainly employed to differentiate infection from 
malignancy. Uthoff and others used radiomics to 
differentiate between histoplasmosis and non-
small cell lung cancer with an AUC of 0.89.11 Liu 
and colleagues drew upon radiomics, conjoined 
with SVM, feedforward backpropagation neural 
network (FNN-BP), and random forest, to 
differentiate silicosis from tuberculosis. They 
reported the highest performance for the 
random forest with an AUC of 0.91.12 Radiomics 
was also used to differentiate primary 
progressive pulmonary tuberculosis from 
community-acquired pneumonia in children 
by Wang and others.13 They reported an AUC 
of 0.97 by developing SVM using radiomics 
features. Shi and colleagues utilizes radiomics 
to differentiate lung cancer from opportunistic 
pulmonary infection in patients with HIV.14 In 
a recently published study, radiomics was 
used to distinguish ground-glass pulmonary 
opacities between COVID-19 infection and non–
COVID-19 pneumonia. The authors extracted 
radiomics features from pulmonary lesions 
and then selected the most predictive features 
via LASSO. In SVM models, the authors used 
selected features to differentiate ground-glass 
opacities between COVID-19 and non–COVID-
19 lesions with an AUC of 0.9.15 In the same line 
with our study, they used ComBat harmonization 
for the normalization of features. Our random 
forest model outperformed their SVM model in 
classification accuracy. In another recent study, 
which is similar to ours, radiomics was used to 
differentiate COVID-19 from influenza A. After 
feature extraction, the authors selected the 
most predictive features by LASSO, and then 

used SVM for the differentiation of COVID-19 
from influenza A lesions. They achieved an AUC 
of 0.87 for this task.16 Our random forest, neural 
network, AdaBoost, and decision tree models 
outperformed their final model. 

The application of radiomics feature extraction 
with different scanners is challenging. Reports 
indicate that feature extraction depends on the 
imaging protocol, reconstruction techniques, 
scanner vendors, and imaging protocol.17-20 In 
our study, CT images were obtained via the 
same pulmonary protocol with similar thickness, 
pitch factor, and matrix and with almost the same 
kVp and mAs. Still, we obtained the images by 
using three different CT scanners, which could 
interface with the observed results. To avoid 
the bias induced by different CT scanners, 
we repeated the AI model training once more 
after harmonizing the extracted features. 
Harmonization has been proposed to resolve the 
effect of different scanners, protocols, and image 
reconstruction techniques on radiomics-based 
models. In this context, ComBat harmonization 
has been promising, and it is especially robust 
in improving chest CT feature extraction. It has 
been reported that this technique can reduce the 
variance of extracted features by different chest 
CT protocols even close to zero.21 The same 
technique also enhanced our classifier models. 
This finding again confirms that radiomics feature 
extraction is scanner and protocol dependent, 
and that all features must be harmonized before 
AI model training. 

PCR is currently regarded as a robust test 
to diagnose H1N1 infection.22 Nonetheless, the 
same does not hold true for COVID-19. Indeed, 
PCR can be negative in 38% of patients with 
COVID-19 on the day of initial symptoms.23 
Having an additional technique with a low 
false-negative rate in detecting COVID-19 
could lessen this PCR weakness. Our review 
of the confusion matrix showed that our best 
model missed very few lesions of COVID-19 
(false-negative rate= <1%). We believe that our 
model or similar platforms can diminish the low 
sensitivity of PCR in COVID-19.

We recognize the limitations of our 
study. This study was conceptual and was 
performed retrospectively. Moreover, only 
H1N1 influenza was compared with COVID-
19, and other causes of pneumonia (bacterial 
and other viral pneumonia conditions) were 
not evaluated. Further prospective studies 
with larger patient populations are needed to 
evaluate radiomics-associated AI techniques 
to augment the accuracy of CT in COVID-19 
pneumonia. Additionally, segmentation was 
performed manually, and every single lesion 
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was segmented individually. Consequently, the 
radiologist’s experience might play a role in the 
final performance. 

Conclusion

Radiomics feature extraction, conjoined with ML 
models, appears to yield promising results in 
terms of improving the specificity and accuracy 
of chest CT to differentiate between COVID-
19 pneumonia and other causes of pneumonia 
(H1N1 in our study). Given the known high 
sensitivity of CT in COVID-19 infection, the 
application of radiomics-AI techniques on chest 
CT may confer a state-of-the-art diagnostic 
method. Radiomics feature extraction in chest 
CT is scanner-dependent, and features must be 
harmonized before classifier model development. 
More extensive studies are required to probe 
further into the role of radiomics in COVID-19 
management.

Conflict of Interest: None declared.
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