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Technical Note

ABSTRACT
QT-interval prolongation is an important parameter for heart arrhythmia diagnosis. It 
is the time interval from QRS-onset to the T-end of electrocardiogram (ECG). Manual 
measurement of QT-interval, especially for 12-leads ECG, is time-consuming. Hence, 
an automatic QT-interval measurement is necessary. A new method for automatic QT-
interval measurement is presented in this paper, which mainly consists of three parts, 
including QRS-complex detection, determination of QRS-onset, and T-end determina-
tion. The QRS-complex detection is based on the modified Pan-Tompkins algorithm. 
The T-end is defined based on Region of Interest (ROI) maximum limit. We compare 
and test our proposed QT-interval measurement method with reference measurement 
in term of correlation coefficient and range of 95% LoA. The correlation coefficient 
and the range of 95% LoA are 0.575 and 0.290, respectively. The proposed method is 
successfully implemented in ECG monitoring system using smartphone with high per-
formance. The accuracy, positive predictive, and sensitivity of the QRS-complex de-
tection in the system are 99.70%, 99.78%, and 99.92%, respectively. The range of 95% 
LoA for the comparison between manual and the system’s QT-interval measurement 
is 0.216. The results show that the proposed method is dependable on the measure of 
the QT-interval and outperforms the other methods in term of correlation coefficient 
and range of 95% LoA.
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Introduction

Electrocardiogram (ECG) can represent the electrical activity of 
human’s heart. It is commonly used for non-invasive tests and 
diagnosis of cardiovascular disease. Each cardiac cycle in ECG 

is characterized by waveform known as P-wave, Q-wave, R-wave, S-
wave, and T-wave [1]. Combination of Q, R, and S-wave is often re-
ferred to QRS-complex.

QT-interval is a reflection of the ventricle’s action potential duration. 
It represents the time of ventricle to experience depolarization and repo-
larization [2, 3]. On the ECG, the duration of QT-interval is defined as 
the period between the start of the QRS-complex (QRS-onset) and the 
end of the T-wave (T-end). The prolongation of QT-interval is an inde-
pendent risk factor for stroke, sudden death, and all-cause of mortality 
[4]. It often happens with Torsade de Pointes (TdP) [5, 6]. These facts 
indicate that the information of QT-interval is very important.
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QT-interval could be measured manually or 

automatically. The drawback of manual QT-
interval measurement, especially for 12-leads 
ECG, is time-consuming. Solution of the 
drawback is provided by utilizing the auto-
matic approach. Different methods have been 
proposed and developed to measure QT-inter-
val [7-11]. The most challenging things in the 
measurement of QT-interval are the detection 
and determination of T-end [11]. 

Smartphone has had important roles in cur-
rent medical practice. Patients and clinician 
discussion, medical education, and disease di-
agnosis can be done via smartphone [12-15]. 
Smartphone with wireless ECG sensor has po-
tential to be used in medical assessments, such 
as continuous assessment of heart functions 
that can be easily integrated in everyday life 
[16]. Electrocardiogram monitoring system 
and feature detection on portable device (such 
as smartphone) have been studied [14, 17-21]. 
In the monitoring system, the ECG’s waves, 
complexes, and intervals can be detected auto-
matically. Wu et al. developed an ECG moni-
toring system that is flexible with small size, 
which can be integrated in t-shirts [21]. This 
device uses a bio-potential Analog Front End 
(AFE) chip to sample good quality ECG data.

This article proposes a new method to de-
termine the end of the T-wave and calculates 
the interval of QT in electrocardiogram. This 
method is based on the region of interest (ROI), 
which is the part of ECG presented in time in-
terval and formed by taking a number of ECG 
samples located before and after the location 
of a desired point. The proposed method is ex-
amined using clinical data from the QT data-
base of physionet [22]. Furthermore, the pro-
posed QT-interval measurement is compared 
with manual QT-interval measurement from 
Physionet QT database.

We implement the proposed method in our 
electrocardiogram monitoring system using 
Android smartphone. We directly sample ECG 
data and measure QT-interval from patients. 
Then, the measured QT-interval from Android 

application is compared to our manual mea-
surement. Therefore, the contribution of this 
article is providing a QT-interval measure-
ment method in Android smartphone.

Material and Methods

Data Preparation
We collect 105 ECG records from Physionet 

QT database [23]. The records are used for 
testing our proposed algorithm. The Physionet 
QT database provides annotation, which indi-
cates the start, peak, and end of the P-wave and 
QRS-complex; the peak and end of T-wave 
and some of the annotations provide an indi-
cation of peak and end of U-wave. All records 
are sampled by sampling rate 250 samples/s or 
4 ms in sampling interval. The records consist 
of 2 rows signal and 22,500 columns samples 
with duration of 15 minutes. We resample the 
records with sampling rate 200 samples/s to 
match our proposed method.

QRS-complex detection
Various algorithms for QRS-complex detec-

tion have been studied [24-26]. One of them 
is algorithm developed by Pan and Tompkins 
[27]. We determine QRS-complex using mod-
ified Pan-Tompkins algorithm, as shown in 
Figure 1(a). The processes of QRS-complex 
detection are described as follows:

Detrending ECG - In order to remove the 
baseline drift, the ECG is fitted in a low order 
polynomial, and the polynomial value is used 
for detrending the ECG.

Band-pass Filtering - ECG has various nois-
es, which can be reduced by signal filtering 
processes in this ECG [28, 29]. In this study, 
ECG’s noises are removed by band-pass filter. 
This filter can reduce the influence of muscle 
noise and power-line interference. Where the 
detrended signal is dn, the output of low-pass 
filter, Dn, is

1 2 6 122 2n n n n n nL L L d d d− − − −= − + − +                (1)

And the output of high-pass filter, Hn, as fol-
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lows,

1 16 17 32
1 1
32 32n n n n n nH H L L L L− − − −= − + + +   (2)

n is the n-th sample. The high-pass and low-
pass filters have cutoff frequency 5 Hz and 11 
Hz [30], respectively.

Derivative Process -The output of band-
pass filtering process is passed to derivative 
process and to suppress low frequency ECG 
wave components. The derivative process, Dn, 
is described as,

[ ]1 3 4
1 2 2
8n n n n nD H H H H− − −= + − −                (3)

Squaring - The output of derivative process 
is squared to make all data point positive and 
strengthens the dominant peak. This process is 
described as follows:

2
n nS D=                                                               (4)

Moving Average Filter (MAF) - MAF is an 
operation for averaging N points of input val-
ues to produce each point in the output [31]. 
The purpose of the MAF process is to remove 

multiple peaks in one area of the QRS-com-
plex. MAF is described as follows:

( ) ( )1 2
1 ...n nn N n NM S S S
N − − − −
 = + + +              (5)

Where Sn is squaring process’ output, Mn is 
the output of MAF, and N is the number of 
samples in the moving window of MAF.

Threshold - The threshold value, T, is ob-
tained by equation (6) and (7).

( )
Mm

maximum M
=                                        (6)

( ). .T m max m α=                                              (7)

Where M is the output of moving average 
filter, m  is mean of m, and α is constant where 
0<α≤1. To find ROI for determining QRS-on-
set, QRS-complex, and T-end, the value of 
moving window output signal is converted 
into 0 or 1, where,

1,  
0, 

n
n

if M T
otherwise

γ
>

= 


                                          (8)

Figure 1: Algorithm of: a. QRS-complex detection, b. QRS-onset determination
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Furthermore, the maximum limit Δ and min-
imum limit δ of ROI can be obtained from the 
following equation:

1

1,  
1, ,  1, 2, ....,   

k
n n

k

then n
n and k number of ROI

δ
γ γ+

=
− = − ∆ = =

(9)

The ROI determination is shown in Figure 
2(a).

QRS-complex detection – the QRS-com-
plex’s peak of the ECG can be detected by 
finding the maximum value of the ECG in ROI 
as described in Figure 2(a). Because of the de-
termination of QRS-complex based on this 
maximum value of ECG, inverted ECG must 
be reversed to get a correct QRS-complex.

QRS-onset Determination
If we draw a straight line from QRS-onset to 

band-pass filtered ECG, the QRS-onset point 
will connect to the minimum value of band-
pass filtered ECG. Therefore, we define the 
QRS-onset as minimum value of band-pass 
filtered ECG between δ and detected QRS-

complex (as shown algorithm in Figure 1(b)).

T-end Determination based on Maxi-
mum ROI Limit (MROIL)

We propose T-end determination based on 
MROIL (T-end1). Firstly, the QRS-complex 
and P-wave in ECG signal are removed. Then, 
the output signal is passed through processes 
as described in Figure 3. ROI on the T-end de-
termination is shown in Figure 2(b). T-end is 
defined as Δ’s position in the ROI.

T-end Determination Using Addi-
tional-Line

Additional-line from T-peak to a point be-
yond the expected inflection point of T-end 
is drawn to determine the end of T-wave (T-
end2). The maximum distance of point on 
additional-line to point of ECG signal is de-
fined as T-end [32]. This T-end determination 
is shown on Figure 4(a) and the algorithm is 
described in Figure 5. We make additional 
line from T-peak (xT,yT) to 100 ms after T-peak 

Trio Pambudi Utomo, Nuryani Nuryani, Anto Satriyo Nugroho 

Figure 2: Region of Interest (ROI) on: a. QRS-complex detection and QRS-onset determination, 
b. T-end determination
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(xnp,ynp). For sampling rate 200 samples/s, the 
number of point (np) is 20. The point on ad-
ditional line is defined as follows:

( )( )

( )( )

. .

. .

np T
i

np T
i

i x np i x
x

np

i y np i y
y

np

+ −
=

+ −
=

                              (10)

And the distance (l) of the additional line to 
point of ECG signal (xe,ye) is as following:

2 2   1, , 20i i ei i eil x x y y withi= − + − = … (11)

T-end Determination Using Deriva-
tive of ECG Signal

T-end determination using derivative of 
ECG signal (T-end3) is based on algorithm de-
scribed in [23] with some modifications. In the 
first step, we derive ECG signal with deriva-

tive process as represented in section 2. Then, 
we determine the minimum limit (θ) and max-
imum limit (Θ) of T-peak and T-end searching 
area. The maximum value (Dmax), minimum 
value (Dmin) of derivative signal between θ 
and Θ, and mins are calculated to determine 
the morphology of T-wave. Furthermore, this 
T-end determination is shown on Figure 4(b) 
and the algorithm is described in Figure 6.

QT-Interval Measurement
We use QT-interval measurement from the 

Physionet QT database to calculate our pro-
posed QT-interval measurement. The refer-
ence of QT-interval measurement is obtained 
from annotation (.q1c) in the database herein-
after referred as QTM. We use T-end positions, 
which is based on T-end1, T-end2, T-end3, and 
T-end position from the annotation (T-endM) 

Figure 3: Algorithm of T-end determination 
based on Maximum ROI Limit (MROIL)

Figure 4: T-end Determination using: a. ad-
ditional-line, b. derivative of electrocardio-
gram (ECG) signal
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[22]. QT1, QT2, and QT3 are QT-interval mea-
surement, which are based on T-end1, T-end2, 
T-end3, respectively. We use the same QRS-
onset point to measure QT1, QT2, and QT3.

ECG Monitoring System
We implement the proposed method on 

Android application and our electrocardio-
gram monitoring system. We directly sample 
ECG data and measure QT-interval from 10 
patients. The patient’s ECG is obtained from 
ECG module. Sampled ECG data is processed 
in microcontroller and sent to Android smart-
phone via Bluetooth Low Energy. Further-
more, ECG data is displayed and can be saved 
on Android smartphone. In general, the ECG 
monitoring system and the electrode configu-
ration are shown in Figure 7.

Calculation of the System’s Per-
formance 

The performance of the QRS-complex de-
tection is evaluated using accuracy (Acc), 
positive predictive (+P), and sensitivity (Se), 
which are determined by the number of true 
positive (TP), false negative (FN), false posi-
tive (FP), and total beat in one record (TB), as 
follows:

1 100%FP FNAcc
TB

 +  = − ×    
               (12)

100%TPSe
TP FN
 = × + 

                              (13)

100%TPP
TP FP
 + = × + 

                                    (14)

The performance of the QT-interval mea-
surement is evaluated using Bland-Altman 
plots. The horizontal axis of Bland-Altman 
plot shows the mean value of two compared 
measurement (e.g. QTM and QT1), and the 
vertical axis shows the difference of these two 
compared measurements. Both axes are in 
second. The middle horizontal line in the plot 
shows bias. Bias is the mean of two compared 

Figure 5: Algorithm of T-end determination 
using additional-line

Figure 6: Algorithm of T-end determination 
using derivative of electrocardiogram (ECG)
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measurements’ difference; the outer lines are 
the bias ±1.96 of two compared measure-
ments’ standard deviation (SD).

Results

Signal processing
Figure 8(a) shows raw ECG detrended (d), 

the output of low-pass filter process (L), high-
pass filter process (H), derivative process (D), 
squaring process (S), moving average filter 
process (M), and thresholding process (T). The 
T-end determination process is shown in Fig-
ure 8(b).

T-end determination
In the T-end determination, the width of the 

window, N, in the moving average filter is 
very important. N should be approximately the 
same as T-wave’s width. Figure 9(a) shows the 
output of moving average filter with various 
value of N. As shown in Figure 9(a), the output 
of MAF has two peaks when N=10, which is 
too wide and merge with U-wave when N=40. 
Therefore, we test N between 20 and 30. Fig-
ure 9(b) shows T-end position with N’s value 
between 20 and 30. From Figure 9(b), we 
choose N=20. Hereafter, ROI is determined 
from threshold process.

Although we choose N so that there are no 
two peaks in one T-wave area, the variety of 
T-wave’s form causes MAF’s output in some 

Figure 7: Electrocardiogram (ECG) monitoring system, a. ECG Module, b. Microcontroller, c. 
Bluetooth Low Energy, d. Android Smartphone

Figure 8: The output of signal processing: a. 
QRS-complex detection process, b. T-end de-
termination process

Automatic QT-Interval Measurement Using Smartphone
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ECGs, which has more than one peak in one 
T-wave area. It produces multiple Δ as shown 
in Figure 9(c). To prevent false definition of 
T-end, one best Δ must be selected. We choose 
Δ with the furthest position from detected R-
peak (ri). But, if this Δ position is more than 
ri+125 points, we choose another Δ with closer 
position to ri. If there is no Δ in one RR-inter-
val, as shown in Figure 9(d). α is updated with 
α=α-0.01. This process is looped until one Δ is 
found or maximum iteration is reached. T-end 
is defined as the middle point of two RR-in-
terval if maximum iteration is reached before 
finding one.

Performance of proposed QT-inter-
val measurement

QT1, QT2, and QT3 are compared and sum-
marized with QTM in Bland-Altman plots. 
Figure 10(a, b and c) show the Bland-Altman 
plot of QT1, QT2, and QT3 is compared to the 
QTM, respectively. Based on these Bland-Alt-
man plots, correlation coefficient (corrcoef) 
and range of 95% Limit of Agreement (LoA) 
are calculated. Table 1 shows the corrcoef 
and 95% LoA’s range of all measurements. It 

Figure 9: Selection of T-end: a. Output of Moving Average Filter (MAF) based on N, b. T-end po-
sition with various N, c. Multiple Δ in one RR-interval, d. Zero Δ in one RR-interval

Figure 10: Bland-Altman Plot of (a) QT1, (b) 
QT2, and (c) QT3

Trio Pambudi Utomo, Nuryani Nuryani, Anto Satriyo Nugroho 
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shows that the correlation coefficient of QT1 
is outperforms QT2, and QT3. The 95% LoA’s 
range of QT1 is the lowest indicating QT1 is in 
better agreement with the QTM than the oth-
ers.

Performance of ECG Monitoring Sys-
tem

Figure 11 shows the Android application’s 
user interface when is receiving and display-
ing ECG. QT-interval measurement, which in-
cludes QRS-complex, QRS-onset, and T-end 
determination, is done in Android application. 
In addition to QT-interval measurement, the 
Android application is designed to calculate 
heart rate and save the ECG data into record.

Table 2 shows the accuracy (Acc), sensitiv-
ity (Se), and positive predictive (+P) of QRS-

complex detection algorithm in the Android 
application. The corrcoef and range of 95% 
LoA (as shown in Table 1 that is denoted as 
Android) are obtained from plotting QT-inter-
val measurement using Android application 
and our manual QT-interval measurement in 
the Bland-Altman plot.

Discussion
This paper proposes an automatic QT-in-

terval measurement based on ROI, which is 
a temporal window for analyzing the part or 
point in the ECG. For QT-interval measure-
ment, we use and compare three algorithms to 
determine T-end. They are T-end1, T-end2, and 
T-end3. Furthermore, we calculate QT-interval 
using these T-end, which are denoted as QT1, 
QT2, and QT3.

Method Corrcoef B SD B+1.96SD B−1.96SD R
QT1 0.575 -0.004 0.074 0.141 -0.149 0.290
QT2 0.439 -0.005 0.112 0.215 -0.225 0.440
QT3 0.392 -0.026 0.083 0.137 -0.189 0.326

Android 0.642 -0.024 0.055 0.084 -0.132 0.216
B: Bias, R: Range of 95% LoA, SD: Standard Deviation

Table 1: Performance of QT-interval measurement

Figure 11: Android Application when receiving and displaying electrocardiogram (ECG)

Automatic QT-Interval Measurement Using Smartphone
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The difficulty of the determination of T-end2 
is the T-wave’s peak, which must be identi-
fied first to determine the T-end, so the algo-
rithm must be able to recognize and identify 
abnormalities of T-wave. The presence of ar-
rhythmia makes the difficulty arise, because 
it causes the T-end not to be in the expected 
position. The flattened T-wave and T-wave 
with small amplitude also make the detection 
of T-end difficult. The algorithm of T-end3 de-
termination can detect four different forms of 
T-wave; they are normal T-wave, inverted T-
wave, only downward or only upward T-wave 
[23]. 

ROI is generated using moving average fil-
ter, demarcating the searching areas of QRS-
complex and T-end. In other studies, region 
of interest is called block of interest [33-35]. 
Block of interest is used for detection of QRS-
complex [33], T-wave [35], and systolic waves 
in photoplethysmograms [34]. Elgendi et al. 
use moving average to emphasize T-wave area 
[35].

Corrcoef, bias, and standard deviation for 
the QT1, QT2, and QT3 compared to QTM are 
calculated. The corrcoef is used for examin-
ing the direction and strength of two compared 

variables’ relationship. The corrcoef’s range is 
from -1 to 1. The strength of two compared 
variables’ relationship is measured from the 
absolute value of this correlation coefficient. 
If correlation coefficient gets closer to the val-
ue of 1, the relationship between two measure-
ment will be stronger. The corrcoef of QT1 
compared to QTM is the highest among the 
others. Therefore, QT1 has the closest corre-
lation to QTM. The analysis of Bland-Altman 
is an appropriate way to perform comparison 
between two measurement methods and deter-
mine whether the proposed or new method is 
able to be agreed on [36]. The bias and stan-
dard deviation are obtained from the Bland-
Altman plot. They are used for calculating 
range of 95% LoA. Range of 95% LoA is dif-
ferent from Bias + 1.96 SD and Bias - 1.96 
SD. The smaller range between these two lim-
its leads into the better agreement [37].

Conclusion
A new automatic QT-interval measure-

ment method for ECG monitoring system 
using smartphone is presented in this article. 
The performance of the method is compared 
to other methods and summarized in Bland-

Patient TB TP FP FN Acc(%) +P (%) Se(%)
01 352 350 7 2 97.44 98.04 99.43
02 326 325 0 1 99.69 100 99.69
03 324 324 0 0 100 100 100
04 372 372 0 0 100 100 100
05 375 375 0 0 100 100 100
06 295 295 0 0 100 100 100
07 365 365 0 0 100 100 100
08 330 330 1 0 99.70 99.70 100
09 385 385 0 0 100 100 100
10 417 417 0 0 100 100 100

Total 3663 3660 8 3 99.70 99.78 99.92
TB: Total beat in one record, TP: True positive, FP: False positive, FN: False negative, Acc: Accuracy, +P: Positive predictive, 
SE: Sensitivity

Table 2: Accuracy, Positive Predictions, and Sensitivity of QRS-complex detection

Trio Pambudi Utomo, Nuryani Nuryani, Anto Satriyo Nugroho 
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Altman plots. The proposed method provides 
higher performance in which the range of 95% 
LoA lower than the other methods. It shows, 
which the method reliably calculates the QT-
interval and has better agreement compared 
to the other measurement methods. The pro-
posed method also has higher corrcoef, show-
ing the higher relationship strength to the 
manual measurement. The proposed method is 
successfully implemented in ECG monitoring 
system using Android smartphone.
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