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Abstract
Introduction: P300 speller is a kind of Brain-Computer Interface (BCI) system in which 
the user may type words by using the responses obtained from human focus on different 
characters. The high sensitivity of brain signals against noise in parallel with the similarity of 
responses obtained from the user focus on different characters makes it difficult to classify the 
characters based on their respective P300 wave. On the other hand, all areas of the brain does 
not carry useful P300 information.
Methods: In this study, a new method is proposed to improve the performance of speller 
system which is based on selecting optimal P300 channels. In the proposed method, recursive 
elimination algorithm is presented for channel optimization, which utilizes deep learning 
concept (e.g. Convolutional Neural Network) as its cost function. The proposed method is 
examined on a data set from EEG signals recorded in a P300 speller system, including 64 
different channels of responses to 29 characters. Then, its performance is compared with 
some existing methods.
Results: The obtained results showed the ability of the proposed method in recognizing the 
characters in such way that it could accurately (i.e. 97.34%) detect 29 characters by using only 
24 out of all 64 electrodes.
Conclusion: Applying the proposed method in speller systems led to considerable 
improvement in classification of characters compared to its alternatives. Several experiments 
proved that utilizing the proposed scheme may increases the accuracy almost 12.9 percent 
compared to non-optimized case in parallel with reduction of the number of involved channels 
by approximately 1/3. Based on these results, the proposed method may be considered as an 
effective choice for application in P300 speller systems, thanks to reduction of the complexity 
of the system which is caused by the reduced number of channels and, on the other hand, due 
to its potential in increasing the accuracy of character recognition. 
Keywords: P300 speller, Brain-Computer Interface, Channel Selection, Optimization, Deep 
Learning, Recursive Channel Elimination, Convolutional Neural Network.
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Introduction

The brain-computer interface is a kind of 
technology that makes a communication 
channel between the signals produced by the 

human brain and the outside world (1, 2). The P300 
speller paradigm is one of the most commonly used 
applications of such systems, in which the user may 
type words without muscle activity on the screen, by 
using the received responses from focusing on the 
characters of the specific matrix (3). 

The P300 wave is an unstable positive pattern in the 

form of human brain Electroencephalogram (EEG) 
signal that occurs approximately 300 ms after the 
stimulation in response to the external stimulus (4). 
There are different methods for recording the brain 
signal, but the use of surface electrodes is the most 
appropriate option for practical applications. Safety, 
being non-invasive, and low cost are the main benefits 
of surface electrodes. Therefore, such electrodes are 
frequently used for recording EEG signals compared 
to other brain signals recording methods (5). In 
the process of recording the above signal, a certain 
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number of surface electrodes is installed according 
to the standard model on the user’s skin; then, the 
user is asked to focus on a character that may contain 
numbers, letters or symbols during a short time (6).

Unfortunately, brain signals have low SNR. 
Furthermore, many internal and external factors 
influence the formation of the P300 wave. Furthermore, 
the P300 signal is highly unstable; therefore, its 
responses obtained from focusing on the same 
character may be different. Therefore, recognizing 
characters by using P300 waveform become a 
challenging problem (7). Consequently, applying 
an appropriate classification method to recognize 
characters from recorded brain signals has become 
one of the important subjects in this field (8, 9).

In several researches, various feature-based or non-
feature-based methods have been used to address the 
problem of character recognition by using P300 signals 
(10). The approaches in this domain may be mainly 
divided into two categories: linear and non-linear 
algorithms. The main objective of all these schemes 
is to obtain higher recognition accuracy when the 
character diversity increases (11, 12). In some studies, 
the Support Vector Machine (SVM) (13) has been 
used as a classifier which has made use of Gaussian 
kernels. The use of the Gaussian kernel results in more 
flexibility in decision boundaries, thereby ultimately 
increasing the accuracy of the classification. However, 
in the above method, the selection of SVM parameters 
is very challenging because the obtained accuracy is 
highly dependent on these parameters. In an improved 
idea, the combination of several SVMs is investigated 
(14); the results of various SVMs are used to decide 
about recognition of more characters, ultimately, 
based on the score obtained by each character in 
several classifiers.

The concept of machine learning based on gradient 
boosting was firstly introduced in (15). The main 
imperfection of this method is its dependence on the 
number of repetition of the algorithm. In another 
study, the ideas of Learning Vector Quantization 
(LVQ) and its improved version, Multichannel 
learning Vector Quantization (MLVQ) have been 
performed (16). The statistical methods such as 
Linear Discriminant Analysis (LDA) and Kernel 
Fisher Discriminant (KFD) have also been examined 
in some researches (16, 17). The performance of 
these methods is also highly sensitive to extracted 
features of EEG signal. Neural networks are another 
commonly used solution to address P300 detection 
problem (17). The disadvantages of this method are a) 
dependence of results on the extracted features from 
the signal, b) dependence of results on the network 

structure, and c) time consuming procedure of neural 
network.

Apart from the classification problem, another 
important challenge in the P300 speller system is that 
the recordings of electrodes are seriously different. 
In other words, some regions of the brain make the 
P300 signal more suitable than others. Therefore, it 
may be said that rejecting those electrodes which 
carry weaker P300 signals (i.e. electrode selection) is 
so effective in improving the efficiency of character 
classification.

So far, extensive researches have been conducted 
on electrode selection. The use of the Particle Swarm 
Optimization algorithm was proposed in (18). 
Despite the success of this method in improving the 
performance of speller system, but its performance in 
clinical applications is hampered because of its time 
consuming nature.

Some other methods make use of mutual 
information concept as a way for channel selection (19). 
Such algorithms are based on the frequent selection 
of new electrodes and, accordingly, electrodes should 
be ranked. Furthermore, the mutual information of 
electrodes is considered to achieve more accurate 
ranking, which leads to much improved results.

In (19), sequential reverse selection, which 
makes use of Signal-to-Noise Ratio (SNR) as its cost 
function in order to optimize the channels, has been 
introduced. Unfortunately, by using this approach, 
the early removal of some channels leads to a loss of 
classification accuracy.

This study presents a new approach which is 
based on the optimized selection of P300 registered 
channels to address the complexity and accuracy 
problems in P300 speller systems. For this purpose, the 
optimization algorithm which is based on recursive 
channel elimination is applied on the recorded data 
set, and the deep learning P300 speller is utilized 
as cost function of the above optimizer. Most of the 
current methods which are used to construct speller 
systems require the extraction of features from the 
raw data. However, extracting the proper features 
is so difficult; additionally, it is possible that the 
extracted features are not suitable for a variety of 
recorded samples. To overcome these limitations, 
we used the convolutional neural network (CNN) 
as our learning scheme in which the extraction and 
classification steps are performed simultaneously and 
automatically. Automatically learning from raw data 
is better for achieving acceptable results in such a way 
that they are independent from different test subjects 
(20). As a result, at each stage, the high-level features 
of the network are extracted from the data and 
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finally classification is performed according to them. 
Hereupon, in the proposed method, by selecting 
the optimal channels in parallel with applying the 
concept of deep learning, the separation of characters 
in the P300 speller will be achieved more accurately 
than the existing schemes. 

In the second part of this study, the proposed 
algorithm is described which performs based on 
channel optimization and deep learning. In the third 
part of the study, the performance of the proposed 
method is evaluated on the P300 speller data set and 
its improvement is investigated. The final part of the 
study is dedicated to the conclusion.

Methods
Currently, neural networks are being used as the 
most efficient classification tool in speller systems. 
Although the accuracy of this tool is relatively 
better than previous methods, the involvement of all 
recording EEG channels hampers the performance of 
such methods. In this section, the proposed scheme 
of this study is illustrated in which the optimization 
algorithm is applied on the recorded data set. The 
proposed method is based on optimizing the channel 
selection by using the recursive channel elimination 
concept. Since the aforementioned optimizer uses 
convolutional neural network as its cost function, 
in subsection bellow (2-1. Convolutional Neural 
Network), this kind of deep neural network is firstly 
studied. Then, in the latter subsection (2-2. Recursive 
channel elimination), our proposed optimizer 
algorithm will be described. 

Convolutional Neural Network
One of the most effective deep learning classifiers 

is the convolutional neural network. This family of 
deep learning schemes makes use of numerous layers 
to incorporate more abstract features in classification 
procedure (21, 22).

The extraction of the feature in CNN is 

hierarchical, which means as layers become deeper, 
the extracted features become higher level and more 
non-linear. The basic structure of the convolutional 
neural network is presented in Figure 1.

The convolution layer contains a collection of 
filters bank that, by applying to the raw input, extracts 
various features. If the input size is assumed N × N 
and ω is a convolution filter with dimensions of m × m, 
then the convolution relationship between these two 
items may be described in the form of equation (1).

In the above equation,  represents the output 
of layer, l shows the layer number, and the pair of (i,j) 
demonstrates the location of the above output cell in 
the active map. Finally, the output size of the layer 
is equal to (N-m+1)×(N-m+1). At this step, the size 
of the data decreases slightly due to the convolution 
operation compared to its initial state. Convolving 
in each layer is followed by a non-linear activation 
function. For example, in ReLU activation function, 
all negative values are considered zero and the 
resultant value (i.e.  ) is fed into the next layer, as 
described in equation (2).

Due to the heavy and complex calculations 
carried out in the convolutional layer, the numbers 
of parameters (weights and bias) are increased. 
Therefore, the pooling layer is used to simplify the 
calculations. Max pooling is one of the methods used 
in this layer. In Max pooling strategy, a k×k window 
slide on the output of the previous layer and due to 
the size of the window looks for the neuron with the 
maximum value. Ultimately, the size of the output is 
reduced to 

After extracting the features, they should be 
fed to a classification layer. The part of CNN which 
performs this task is called fully connected layer in 

Figure 1: A type of convolutional neural network structure
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which a complete connection exists between all the 
neurons and those of the previous layer. In addition, 
in the previous layers, the outputs were expressed in 
mass form, but in this layer, because the results of 
the classification should be expressed, the output is 
shown in the form of the vector.

Recursive Channel Elimination
Most of the recorded brain signals are based on 

64 electrodes, which are installed on the user’s scalp 
according to the 10-20 standard (23). It should be 
noted that each region of the brain carries a type 
of information. For example, in some regions of 
the human brain, such as the central and occipital 
lobes, P300 wave is formed stronger; on the contrary, 
weaker wave of the P300 is produced in the temporal 
and frontal lobes. On the other hand, the place of 
production of the best signals is not necessarily 
adjacent, and choosing the best electrodes individually 
and placing their signals together does not lead to the 
best results (24). Accordingly, in most BCI systems, 
the use of these 64 electrodes is not necessary and 
optimization of electrodes is a challenge (25).

In this method, first, using all 64 channels, the 
CNN method is performed, and then each of the 64 
electrodes are separately and temporarily removed. 
In each deletion, the fitness function is produced for 
the remaining 63 electrodes (i.e. electrode set with 63 
members), based on trained CNN. Finally, we have 
64 responses that were obtained from 64 electrode 
sets (each of them comes from all electrodes, except 
one). Now the best result is selected among the above 
64 responses and the neglected electrode in this 
result is completely removed from the electrodes set. 
Similarly, in 63 new electrodes, along with increased 
accuracy, the number of channels using the recursive 
channel removal method is reduced. Eventually, a 
set of electrodes is obtained which gives the highest 
accuracy. It should be noted that performing the above 
method by single electrode neglecting strategy is very 
time consuming. Therefore, in order to compromise 
between time and accuracy, it is possible to remove 
an arbitrary multiplex set of electrodes in each step 
rather than single electrode. In Figure 2, a pseudo-
code is presented for the proposed method. In this 
paper, each eight-member set of electrodes is removed 
at each step, and finally only those electrodes which 
led to the most accuracy in distinguishing several 
characters remained. 

Results
The proposed method was implemented by using 
Matlab 2016a on a PC with a seven-core CPU with 

2.10GHz processor, 64 GB RAM and Windows 8.1 
operating system. Then, the proposed method was 
tested on a set of recorded brain signals (26) in which 
the subjects were exposed to a 6×6 matrix, as depicted 
in Figure 3, which contains the letters [A- Z], numbers 
[1-9] and [-].

Figure 2: Convolutional neural network algorithm pseudo-code 
along with Recursive channel elimination algorithm

Figure 3: A 6×6 matrix containing the letters [A-Z], numbers 
[1-9] and [-] [23]
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This matrix had been organized in 6 rows 
and 6 columns; each of them was randomly and 
continuously blinking. Then, the user is asked to focus 
on one of the characters. Each character is obtained 
from the intersection of a given row and column. For 
each focusing period on a specific character, the rows 
and columns of the matrix are turned on and off 15 
times and eventually averaging is performed. Thus, 
focusing on a character would result in a different 
P300. The complete specifications of the dataset are 
summarized in Table 1. This Table shows the basic 
parameters of the signals used in this research. These 
signals are utilized to evaluate the performance of 
the proposed method in two scenarios, which are 
fully embedded in the following sections (e.g. 3-1 and 
3-2). Therefore, the reader must first understand the 
nature of the applied data.

In order to evaluate the effectiveness of the 
proposed method, two other state-of-art methods 
have been implemented along with it. The alternative 
methods include: a) classical multi-layer neural 
network with error back propagation training and 
b) deep learning based on convolutional neural 
network without channel optimization. The tests 

were performed in two different scenarios as follows.

First Scenario: Deep Learning without Optimization
In the first scenario, the ability of deep learning 

paradigm is evaluated to address the mentioned 
character recognition problem. For this purpose, the 
data set which was described in previous section was 
presented in parallel manner to the convolutional 
and the multilayer perceptron neural networks (i.e. 
CNN and MLP). The structure and some parameters 
of the neural networks in this scenario are described 
in Table 2.

In the first scenario, different modes of the classic 
neural network were implemented in order to classify 
the characters. In the first step, a neural network was 
created for the classification of 2 different classes and 
gradually, the number of classes (and therefore inputs) 
increased. Table 3 shows that MLP network separates 
two characters from each other with accuracy of 
96.67%, while the accuracy of the convolutional neural 
network was one percent lower in a same test. By 
increasing the diversity of characters, the performance 
of the MLP was significantly reduced compared to the 
CNN. Increasing the characters’ diversity up to 4, the 

Table 1: Specification of the raw data which were subjected in all performance evaluations
Data specification Description
Experienced people 2 subjects, healthy
Number of record sessions 5 sessions
Number of electrodes 64, according to standard 10-20
The duration of the rows or columns is ON 100 ms
The duration of the rows or columns is OFF 75 ms
Sampling frequency 240 Hz
Blinking rate 5.7 Hz
Number of characters for each subject 85
Preprocessing Bandpass Filter: 0.1-60 Hz

Table 2: The structure and parameters of MLP and CNN
Network Learning rate Activity function Layers
MLP 0.01 Logsig Variable

between 1 to 4
hidden layers

CNN 0.01 ReLU A convolutional
layer & a pooling layer

*MLP: Multilayer Perceptron, CNN: Convolutional Neural Network

Table 3: Results obtained from two MLP and CNN networks
29252015105432Variety of number of characters
65456006539046973542209716941001770Number of training data
4335397835703111234613771122663510Number of testing data
84.4184.6284.7184.8085.4688.8991.8794.3895.58Accuracy of CNN (%)
...................................................................54.8186.1296.67Accuracy of MLP (%)

*MLP: Multilayer Perceptron, CNN: Convolutional Neural Network
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MLP leads to unacceptable accuracy to the extent of 
54.18%. Therefore, the MLP was not used more. The 
performance of CNN in the same situation (i.e. 4 types 
of characters) has still been satisfactory (91.87%).

Thus, this test showed that CNN had a significant 
gain compared to the MLP in distinguishing several 
types of characters. According to Table 3, in parallel 
with gradual increase in the variety of characters, the 
CNN still has a satisfactory performance in such way 
that with a variety of 29 characters its accuracy has 
been almost 84.4%. 

As observed in the above table by using 770 
training patterns and 510 test patterns, the MLP was 
able to separate the two characters with an accuracy 
of 96.67%. However, CNN achieved an accuracy of 
95.58% by using the same patterns, which indicated 
that the CNN performed slightly weaker than MLP. 
In the next step, the MLP achieved the accuracy of 
86.12% in recognizing three characters, but the CNN 
was able to achieve 94.38% accuracy, which was a bit 
strong than MLP. For identifying four characters, 
although MLP network became much more complex 
than previously examined MLPs, it reached the 
unacceptable accuracy of 54/81 percent. In contrast, 
the CNN reached the accuracy of 91.87%, which 
showed a difference of 37.06% compared to MLP. 
The results show that MLP neural network does not 
work well for separating more than three types of 
characters. Therefore, only CNN was used to continue 
the test procedure. The CNN was able to separate 
5 characters with 2097 training data and 1377 test 
data with an accuracy of 88.89%. The number of 
characters increased step by step; as a result, CNN 
achieved the accuracy of 84.41% in separation of 29 
characters. In the latter case, 6545 train patterns in 
parallel with 4335 test patterns were utilized which 
had been obtained by using 64 electrodes.  

Second scenario: Deep Learning with Electrode 
Selection Optimization 

As mentioned, an important challenge in BCI 

speller character recognition is selecting those 
channels whose P300 signals are more effective in 
improving the performance of the system. In the 
second scenario, the recursive channel elimination 
method was used to improve the above selection. 
Then, the optimal selected channels are used as 
deep learning input data. Finally, the results of such 
optimization are compared with those of the results 
of deep learning method without optimization; 
therefore, the improvement created by the proposed 
method is indicated.

Several researches in neuroscience (27) mentioned 
that the strongest P300 signals maight be obtained 
in the regions Fz, Pz, and Cz; on the other hand, 
because of visual stimulation, occipital areas carry 
useful features in connection with the P300 signal 
(28). Based on this information, it may be understood 
that some brain regions, especially temporal regions, 
produce weak signals.

To perform recursive channel elimination, at each 
step, an arbitrary set (containing 8 electrodes) was 
temporarily removed, so that each electrode was at 
least once removed from the electrodes set. 

Table 4 clearly explains how the proposed method 
may improve the accuracy of the speller system by 
means of removing ineffective electrodes during a 
step-by-step procedure. For instance in the first step, 
a considerable accuracy improvement was obtained 
(e.g. increasing accuracy from 84.41 to 90.61 percent) 
due to the removal of Fpz, F8, F7, T7, T9, T10, P7, P6 
electrodes (see the first and second rows of Table 4). 
Therefore, the process continued without the presence 
of these electrodes. 

In the next step, among 56 remaining electrodes, 
the recursive channel elimination was performed. 
In this generation, the elimination of electrodes 
FT7, FT8, AF7, AF8, T8, TP7, TP8, FC3 improved 
the accuracy of the speller system up to 95.36%. To 
show that only removing those electrodes which 
have been indicated by our algorithm may improve 
the results, in a separate test we removed another 

Table 4: Results obtained by applying recursive channel elimination in step-by-step sense
Accuracy %Electrodes removed up to this generationGeneration 

number
84.41-------------------1
90.61Fpz, F8, F7, T7, T9, T10, P7, P62
95.36FT7, FT8, AF7, AF8, T8, TP7, TP8, FC3, Fpz, F8, F7, T7, T9, T10, P7, P63
 
95.48

FC5, FC6, FP1, AF4, CP5, CP6, P8, Iz, FT7, FT8, AF7, AF8, T8, TP7, TP8, FC3
Fpz, F8, F7, T7, T9, T10, P7, P6

4

 
96.52

FP2, AFz, F5, F6, C5, C6, P5, PO4, FC5, FC6, FP1, AF4, CP5, CP6, P8, Iz,
FT7, FT8, AF7, AF8, T8, TP7, TP8, FC3, Fpz, F8, F7, T7, T9, T10, P7, P6 

5

97.34AF3, F4, FCz, C4, P1, PO3, FC4, CP2, FP2, AFz, F5, F6, C5, C6, P5, PO4, FC5, FC6, FP1, AF4, CP5, CP6, P8, 
Iz, FT7, FT8, AF7, AF8, T8, TP7, TP8, FC3, Fpz, F8, F7, T7, T9, T10, P7, P6

6
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set of electrodes. The obtained results of this test 
showed if we mistakenly remove, for example, the set 
of electrodes “FP2, F4, FC5, C2, TP7, CP4, P1, O1”, 
the accuracy of the results not only did not improve, 
but also decreased to 49.48% percent. This example 
may show the effectiveness of rejecting valid weak 
electrodes which are indicated by recursive channel 
elimination.  

The results of two previous steps showed that 
removing 16 among 64 electrodes caused impressive 
increase of accuracy to the extent of 10.95%, 
compared to the absence of channel optimization. 
This fact shows that this area produces the least 
valuable P300 wave. In the next generation, rejecting 
set of electrodes FC5, FC6, FP1, AF4, CP5, CP6, P8, 
and caused a slight increase in accuracy (e.g. 0.12% 
between the third and fourth rows of Table 4).

Subsequently in the next step, the other 8 high 
electrodes were removed from the 40 remaining 
electrodes. As shown in Table 4 (row 5), removing 
these electrodes increased accuracy a bit (i.e. 
approximately one percent), compared to the last 
previous state. 

In the fifth step of applying the recursive channel 
elimination method, the CNN achieved an accuracy 
of 97.34%, by removing the 8 other worse electrodes 
from the above remaining set. In the next step, 
the mentioned method was continued in order to 
increase the accuracy and also reduce the number 
of the remaining electrodes. However, the obtained 

accuracy in this step was 91.31%, which not only 
was not better than the fifth step, but also showed 
a significant loss about 6.3%. Therefore, it may be 
concluded that the continuation of this process 
is no longer effective in promotion of the speller 
performance. Thus, the optimal result was stabilized 
as 97.34%, which had been obtained by removing 40 
electrodes, as summarized in Table 4.

Discussion
The 6*6 matrix was used as the pattern to stimulate 
the test objects, and as a result to obtain the P300 
signal including 36 different characters. The routine 
of the tests was that each test object was asked to focus 
on a character which is indicated as the junction of 
the specified rows and columns (e.g. corresponding 
to the desired character). Each row or column was 
on and off for 100 and 75 milliseconds, respectively. 
In total, the brain signal was recorded in 5 sessions 
which led to 85 characters per person. The signals 
were recorded by utilizing 64 electrodes mounted 
on the skull. Figure 4 clearly shows the arrangement 
of the removed electrodes at each step of running of 
recursive channel elimination algorithm, depending 
on their location on the patient’s head. Therefore, 
this figure may help us to analyze how well the 
performance of the proposed method is compatible 
with biological facts. As a result, Figure 4 and its sub-
figures (a-f) play an important role in all analyses of 
this section of the study. Because not all regions of 

Figure 4: The images above show the removed electrodes in each step. The white electrodes represent the active channels, the yellow 
electrodes represent the electrodes removed at each step, which caused an increase in accuracy, and the red electrodes are the channels 
that were permanently removed from the network in previous stages and continued to be processed without their presence.
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the brain produce strong P300 signal, the intensity of 
the signal recorded from different electrodes varied. 
Therefore, poor signals may have a negative effect on 
character recognition (e.g. accuracy reduction). We 
made use of recursive channel elimination algorithm 
as an optimizer concept for reinforcement of deep 
neural networks to better recognize the characters in 
P300 speller. This algorithm detects and subsequently 
eliminates the electrodes whose signal has a negative 
effect on the accuracy of the step-by-step method. 
The above algorithm identified and removed eight 
electrodes (i.e. Fpz, F8, F7, T7, T9, T10, P7, P6) in its 
first step, which resulted in considerable improvement 
of accuracy about 6.2 percent (which was described in 
Table 4). The considerable thing that makes us rightly 
hopeful is that the above electrodes were mainly 
located in the head margin as well as near the ears 
(see Figure 4-b). These areas contain those regions of 
the brain that have the least chance of producing P300 
signal in biological point of view. Consequently, the 
results of this step of our optimization method were 
overall in a good agreement with biological facts. The 
second batch of electrodes removed by the optimizer 
algorithm also increased the accuracy by about 5%. 
The second level of electrodes may be illustrated as 
a set of FT7, FT8, AF7, AF8, T8, TP7, TP8, FC3, as 
described before in Table 4. These electrodes were 
mainly placed in the head margins (as shown in 
Figure 4-c) and, therefore, we can conclude that in 
the mentioned steps most of the electrodes which had 
been located in the temporal regions of the brain have 
been removed, which increased the performance of 
the system by almost 11 percent. The only unexpected 
coincidence in these results was the removal of the 
electrode FC3. This electrode is located in a region 
of the brain that is predominantly known as imagine 
motion area (see Figure 4-c). Thus, although this 
area of the brain is not directly related to the type of 
activates which we were looking for, but it was not 
initially considered a good candidate for elimination. 
It seems that the mutual effects of the adjacent regions 
on the electrode were the reason of this undesirable 
phenomenon. However, this may be an interesting 
topic for future research. Removing the next three 
levels of electrode (e.g. last three rows of Table 4) 
clearly indicated a serious difference between the 
importance of non-temporal and temporal electrodes 
(e.g. regions) in the optimization process. As shown 
in the section results, the removal of temporal 
electrodes led to 11 percent improvement in speller 
accuracy. However, the rejection of non-temporal set 
electrodes in the next three cycles resulted in only 
almost 2% improvement in the final result (see last 

three rows of Table 4 in parallel with Figure 4-e to 4-f). 
However, after five optimization levels that resulted 
in only 24 most effective set of electrodes remaining, 
it was found that removing much more electrodes 
did not improve the results. Accordingly, the final 24 
electrodes were fixed with the accuracy of more than 
97% as the final result. The most important drawback 
of this method is that the mutual effects of their 
respective regions on each other were not considered 
in optimizing the procedure. As described in the 
preceding lines for one of these electrodes, if we can 
obtain the appropriate mathematical relationships to 
model this effect, we can reach the same results with 
even fewer electrodes. This may be the subject of our 
future research in this domain.

Conclusion
In this study, an optimization scheme was proposed 
in order to improve character recognition accuracy 
in BCI speller. The proposed technique was based on 
recursive channel elimination which used a trained 
CNN as its cost function. The aim of the proposed 
method is to achieve the highest accuracy in the 
presence of the lowest number of recording channels. 
To achieve this goal, it tries to neglect less effective 
recording channels in the procedure of P300 speller. 

To evaluate the performance of the proposed 
solution, firstly the performance of classic and deep 
neural networks in P300 based character recognition 
was compared. The comparisons indicated that 
along with the increase of varieties of characters, 
the performance of the deep neural network become 
significantly better than the traditional structure of 
neural networks in such way that in four-character 
recognition mode, the deep learning method 
reached an accuracy of almost 40 percent more 
than traditional neural networks. In this way, deep 
learning was fixed as the cost function block for 
our proposed optimization scheme. In the second 
scenario, the channel optimization algorithm was 
performed by using the above-mentioned cost 
function. The obtained results showed that the 
proposed method was able to delete the channels 
(i.e. recorded signals) which contained lower P300 
information than others. This method improved 
the accuracy for distinguishing 29 characters from 
84.41 percent (e.g. employing of all 64 channels) to 
97.34 percent (e.g. in presence of only 24 optimal 
channels). The obtained results suggest that the use 
of the proposed method in P300 speller technology 
may significantly improve the accuracy of the 
system in parallel with the reduction of the number 
of channels.
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