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Introduction

Breast cancer is one of the most common cancers among wom-
en, resulting in half of million deaths each year, and also is the 
second death-causing cancer among all cancers in women [1]. 

Researchers believe that early diagnosis of breast cancer can decrease 
death by up to 30% [2]. 

To diagnose this disease, a diagnostic test such as the preparation of 
a mammography image is proposed, which causes the tumor to be di-
agnosed in the preliminary stages before the disease symptoms exhib-
ited [3]. Given the extensive use of mammography for screening and 
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ABSTRACT
Background: Given the extensive use and preferred diagnostic method in com-
mon mammography tests for screening and diagnosis of breast cancer, there is 
concern about the increased dose absorbed by the patient due to the sensitivity of the 
breast tissue. 
Objective: This study aims to evaluate the entrance surface air kerma (ESAK) 
before irradiation to the patient through its estimation.
Material and Methods: In this descriptive paper, firstly, a phantom was used 
to measure some data, including ESAK, Kvp, mAs, HVL, and type of filter/target. 
Secondly, the MultiLayer Perceptron (MLP) neural network model was trained with 
Levenberg-Marquardt (LM) backpropagation training algorithm and finally, ESAK 
was estimated. 
Results: Based on results obtained from the program in different neuron num-
bers, it was found that the number of 35 neurons is the most optimal value, offering 
a regression coefficient of 95.7%. The Mean Squared Error (MSE) for all data was 
0.437 mGy and accounting for 4.8% of the output range changes, predicting 95.2% 
accuracy in the present research.  
Conclusion: Using neural networks in ESAK prediction, the method proposed 
in the present research leads to the possible ESAK estimation of patients before 
X-Ray. The results suggested that the regression coefficient represented 4.3% differ-
ence between the kerma measured by solid-state dosimeter in the radiation field and 
the value predicted in the research. In comparison with the Monte-Carlo simulation 
method, this method has better accuracy.
Citation: Nabipour M, Deevband MR, Asgharzadeh Alvar A, Soleimani N, Sadeghi S. A New Method on Kerma Estimation in Mammography 
Screenings. J Biomed Phys Eng. 2021;11(5):595-602. doi: 10.31661/jbpe.v0i0.1146.
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early diagnosis of breast tumors, there is con-
cern about the increased dose absorbed by the 
patient due to the sensitivity of breast tissue. 
Thus, the mean glandular dose through its es-
timation can help to recognize the level of ab-
sorbed dose [4].

Several methods have been presented to cal-
culate the mean glandular dose, which most 
of them are based on Monte-Carlo simulation. 
For this purpose, ESAK is measured using a 
dosimeter and then the necessary conversion 
factor coefficients besides the calculated pa-
rameters are obtained through interpolation 
of data via Monte-Carlo simulation method 
in different studies [5, 6]. The disadvantage of 
the mentioned method is calculating the mean 
glandular dose that it is necessary to have the 
result of breast tissue dosimetry. According 
to the statistics available, in 2017 in Iran, 722 
mammography devices are available that 14 
centers are equipped with suitable measure-
ment devices. Thus, the methods based on the 
results of measurement for dose estimation 
cannot be efficient.

Another method is the simulation of a mam-
mography device by the details of the mam-
mography device using Monte-Carlo code. 
The disadvantage of Monte-Carlo is that con-
sidering the difference in devices, separate 
simulations should be used for any center and 
device, which is difficult and complex. In ad-
dition, since the devices are relatively old in 
our country, the function of devices will have 
different nominal features, which are not in-
cluded in the simulation [7, 8]. In research by 
Mohammadi et al. on mammography exami-
nations by ThermoLuminescent Dosimeter 
(TLD) and Monte-Carlo simulation methods, 
it was found that there is a difference in doses 
absorbed in the breast tissue between 7.5 and 
17% for these two methods (measurement and 
computational) [9].

To resolve these issues and achieve an ac-
curate and efficient estimation, the research-
ers decided to use a neural network for kerma 
estimation. The advantage of Artificial Neural 

Networks (ANN) is good accuracy, as they are 
trained by the data of different centers [10] and 
in a large number and measure the air kerma 
automatically so that in the mentioned model, 
there is no need to dosimeter and trained op-
erators and is also more user-friendly. Further-
more, it decreases the computational error and 
the difference between the absorbed dose mea-
sured by dosimetry and computational method 
of Monte-Carlo simulation method [11].

Material and Methods
The proposed method includes collecting 

samples, preprocessing, training neural net-
works and finally, evaluation of networks. In 
this experimental study, 224 samples output 
from 32 mammography centers were collected 
throughout the country. To measure the data, a 
phantom with features similar to the breast tis-
sue contents (fat/adipose ratio: 50-50%) was 
used [12]. Furthermore, the solid-state detector 
was used to measure the air kerma and Half-
Value layer (HVL). Concurrent with recording 
and measuring ESAK on the phantom equiva-
lent to the breast tissue and HVL, Kilovoltage 
peak (Kvp), milliAmperage-seconds (mAs), 
and type of filter/target were also recorded 
considered as the confounding factors in HVL 
of the device. HVL depends on the anode volt-
age, filter, anode material, and tube age. Thus, 
the type of brand and life span of any device 
are observed in HVL [13], and this parameter 
applied to the network as input. The network 
designed in the present research consisted of 
six inputs, including the device brand, Kvp 
value, mAs value, type and material of the fil-
ter/target, the total filter thickness, and HVL, 
which were coded as variables in the network 
input. The output was ESAK of the breast. Af-
ter collection, the data were categorized into 
three groups: training, validation, and test sets. 
The training data accounted for 70% of the en-
tire data, with the validation and test sets each 
capturing 15% of all data. To separate them, 
the simplest method, which was a selection of 
each set randomly, was used.
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Artificial neural networks learn the general 

rules based on calculations on numerical data 
or examples. When there is a necessity to use 
prediction methods with the minimum error 
and maximum reliability, artificial neural net-
works are used. The advantages of ANNs over 
statistical methods include no limitation in 
the number of inputs and outputs, insensitiv-
ity to sudden changes in the data, the potential 
of modeling highly nonlinear behaviors, fast 
training, and a process to prevent overfitting 
[14, 15].

In calculating ESAK, a multilayer percep-
tron was utilized. The MLP network with the 
back-propagation learning method is one of 
the most common practical networks. Vari-
ous studies have demonstrated that the MLP 
network is of supervised learning type, and, 
in case of proper selection of suitable inter-
nal structure, it can model and simulate any 
nonlinear system [16]. For training the neural 
network, a Levenberg-Marquardt back-propa-
gation algorithm was used. This algorithm is 
indeed a transformation of the Newton meth-
od, designed to minimize functions which are 
in the form of a sum of squares of other non-
linear functions. Typically, Levenberg-Mar-
quardt is used in multilayer networks, which 
have up to hundreds of weight and bias and in 
function approximation that the performance 
index is mean squared error, which is the fast-
est training method [17, 18]. 

In multilayer networks, used for function ap-
proximation and pattern recognition, the num-
ber of hidden layers required in the network 
is not determined by the problem description; 
thus, any number of the hidden layer can be 
possible. The standard process is that the train-
ing begins with a network consisting of a hid-
den layer. If the performance of the bilayer net-
work was not satisfactory, then the three-layer 
network can be used. The use of more than 
two hidden layers in ANNs is unconvention-
al [18]. Hence, the bilayer network was also 
used in the present research. Furthermore, the 
number of neurons in each layer should also 

be determined. The number of neurons in the 
output layer is equal to the size of the vector 
of the target data. Due to the presence of only 
one output, our network has had one output 
layer neuron. The number of neurons in hid-
den layers is determined based on the extent 
of the complexity of the problem, which has 
a minimum and maximum value. The mini-
mum number of the first layer neurons in the 
bilayer neural network is experimentally ob-
tained from Eq. (1); where n1 is the number 
of first layer input and n0 represents the num-
ber of output layer neurons, which are 6 and 
1, respectively. Thus, the minimum number of 
first-layer neurons of the network is 14. The 
maximum number of first-layer neurons in the 
bilayer neural network is also obtained from 
Eq. (2); where k is the number of samples. 
Thus, the maximum number of the first-layer 
neurons of the network is 261 [18]. Further-
more, to train the network, the tangent sigmoid 
transfer function has been used (Figure 1).

2( 1 2)n n+                                                     (1)

( )1 0 0
1 0 1

k n n n
n n
+ −
+ −

                                                (2)

Sigmoid transfer functions are mostly used 
in multilayer networks trained by the back-
propagation algorithm. One of its factors is the 
derivability of these functions [18]. In terms 
of optimization, learning in ANN is equiva-
lent to the minimization of an error function 
as an index of the model performance. Among 
the most common and important performance 
indices of the model, one can mention the 
MSE between the output and target, and the 
regression index representing the correlation 
between the output and target [18]. Thus, to 
investigate the accuracy of the neural network 
and the accuracy of kerma estimation, in ad-
dition to the investigation of the model per-
formance indices, the model results have been 
compared with the results of the reported piec-
es of research. The specifications of the opti-
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mized neural network in this study are sum-
marized in Table 1.

Results
After designing the network, training, and 

running the program, the network with dif-
ferent conditions and parameters was trained 
to achieve the best result. The error gradient, 
which is the function derivative in closing 
into zero, suggests that the function slope at 
that point has become zero. Thus, it shows the 
extremum of function with the meaning of a 
local minimum. Hence, it represents the con-
vergence of the target values and output, and 

the program no longer needs to continue. Ac-
cordingly, the error gradient was considered 
10-7 [19, 20].

In training the neural network in each itera-
tion, we face a new network. For this reason 
and to increase the reliability of the network 
performance, for a certain number of neurons, 
we trained the network five times and the mean 
values of its evaluation index were regarded 
as the criterion [21]. As mentioned previously, 
the number of neurons in hidden layers is de-
termined given the extent of the complexity of 
the problem, which for the present problem, 
this value was obtained between 14 and 261. 
By running the program for all of these neu-
rons, it was found that at values above 60 neu-
rons due to the complexity of the solution and 
computations, regression reached below 85% 
(Figure 2). Furthermore, the RMSE value for 
the test data reached over 1.73 at values above 
60 neurons, which is around 19.05% of the 
range of output changes.

The variations of the MSE in relation to the 
number of neurons are presented in Figure 3. 
As seen in Figure 3, with the increase in the 
number of neurons, MSE value grows. Thus, 
a neural network above 60 neurons in the hid-
den layer is not optimal.

To achieve the most optimal number of neu-
rons, the mean values of the network evalua-
tion indices in relation to the number of hid-
den layer neurons are presented in Table 2.

Figure 1: The bilayer neural network with six inputs and tangent sigmoid transfer function and 
one output with purelin transfer function.

NN architecture MLP with 2 layers

Inputs: six inputs with tangent 
sigmoid transfer function

Kvp, mAs, type of filter 
target, total filter thick-

ness, HVL, brand
Output: one output with linear 

transfer function ESAK

train function Levenberg-Marquardt
hidden layer size 35
divide function Random

train, validation and test ratio 70/100, 15/100, 15/100
performance function MSE

NN: Neural Network, MLP: MultiLayer Perceptron, Kvp: 
Kilovoltage peak, mAs: milliAmperage-seconds, HVL: Half-
Value layer, ESAK: entrance surface air kerma, MSE: Mean 
Squared Error

Table 1: Specifications of the optimized neu-
ral network.
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In the network with 35 neurons in the hid-
den layer, the network has the maximum re-
gression between the output and target with a 
value of 94.9%. Furthermore, the mean MSE 
of the test and training data was obtained as 
0.912 and 0.201 mGy, respectively, where 
9.15% of the range of changes and 2.14% for 
the output were obtained. Thus, the number 
of 35 neurons is the best number of training 
the network. Again, the network was trained 
by 35 neurons in the hidden layer, whose re-
sults are presented in Figures 4 and 5. Figure 
4 shows that MSE value for all data was ob-
tained 0.437 mGy, accounting for 4.8% of the 
range of output variations, while the regres-
sion value between the output and target value 
is 95.7%. The mean and standard deviation 
of MSE in the histogram diagram is 0.03 and 

0.66, respectively. Moreover, figure 5 shows 
that the MSE value for the test data is 0.503 
mGy, accounting for 5.1% of the output varia-
tions, while the regression between the output 
and target value was obtained 95%. Also, the 
mean and standard deviation of MSE in the 
histogram diagram of test data are 0.19 and 
0.69, respectively. Thus, using a trained ANN, 
one can estimate ESAK with a desirable ac-
curacy (95.7%).

Discussion
In this paper, the MLP neural network 

model was trained by LM training algorithm 
to predict air kerma based on measurable pa-
rameters. Based on Figures 4 and 5, it can be 
found that the regression coefficient between 
the output and target in the research is 95.7%, 

Figure 2: The output and target regression in relation to the number of neurons of the hidden 
layer.

Figure 3: The Mean Squared Error (MSE) in relation to the number of neurons of the hidden 
layer.

599



J Biomed Phys Eng 2021; 11(5)

Mohammad Nabipour, et al

representing 4.3% difference between the air 
kerma measured by solid-state dosimeter and 
the simulation performed in this research. 
Furthermore, the MSE between the measured 
and simulated values is 0.437 mGy, account-
ing for 4.8% of the range of variations in the 
measured air kerma. The test conducted on the 
collected data generated positive results. In 
all cases, the regression correlation factor was 
over 94% (Figure 6).

Conclusion
There have not been more studies on this type 

of approach in predicting the air kerma. On the 

other hand, extensive studies have been done 
by Monte-Carlo simulation method, which 
had 7.5-17% difference between the values 
measured by the dosimeter and simulated by 
the Monte-Carlo method. Although this ap-
proach is not originally a standard method for 
determining the air kerma in common mam-
mography, the current method of using neu-
ral networks in predicting air kerma makes it 
possible to estimate the patient’s possible air 
kerma before being exposed to X-ray. This ap-
proach can be a key step in the development 
of such neural network systems, as it can be 
trained by more data to achieve even better re-

Neuron 
no.

MSEtrain 
value

MSEtest 
value

R (%)
Neuron 

no.
MSEtrain 

value
MSEtest 

value
R (%)

14 0.365 1.658 0.918 38 0.390 4.305 0.890
15 0.202 1.082 0.947 39 0.653 2.246 0.894
16 0.888 1.407 0.881 40 0.213 5.748 0.898
17 0.417 2.290 0.926 41 0.481 3.829 0.902
18 0.975 2.354 0.875 42 0.601 2.384 0.905
19 1.147 1.201 0.878 43 0.367 6.143 0.863
20 0.413 1.387 0.925 44 0.487 1.868 0.914
21 0.339 1.822 0.933 45 0.934 1.284 0.866
22 0.845 1.806 0.907 46 1.003 3.411 0.848
23 0.848 1.503 0.882 47 0.155 5.482 0.879
24 0.722 1.009 0.920 48 0.250 2.186 0.935
25 1.724 2.282 0.799 49 2.590 4.183 0.789
26 0.797 1.368 0.910 50 0.565 1.469 0.905
27 0.652 1.413 0.916 51 0.380 3.649 0.901
28 0.394 2.697 0.920 52 0.203 1.770 0.895
29 0.0820 1.583 0.824 53 0.547 1.825 0.896
30 2.270 3.540 0.816 54 0.186 4.025 0.887
31 0.149 2.919 0.937 55 0.212 1.229 0.946
32 0.363 3.181 0.908 56 0.458 5.519 0.876
33 0.304 2.438 0.904 57 0.627 2.525 0.908
34 0.419 1.947 0.933 58 0.242 1.479 0.920
35 0.201 0.912 0.949 59 0.966 4.110 0.863
36 0.497 1.578 0.925 60 0.803 0.925 0.891
37 0.290 5.239 0.897  

Table 2: The mean values of the network evaluation indices in relation to the number of neu-
rons of the hidden layer.
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Figure 5: Top-left: Comparing the output and target for test data; bottom-left: error for test data 
Top-right: comparing the output and target regression for test data; bottom-left: histogram dia-
gram of the error of test data.

Figure 4: Top-left: Comparing the output and target for all data; bottom-left: error for all data 
Top-right: comparing the output and target regression for all data; bottom-left: histogram dia-
gram of the error of all data.

Figure 6: Comparing the neural network estimation (black), the collected data (blue), and the 
error value (red).
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sults.
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