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Introduction

Recent studies have revealed that CT scanning poses a potential 
cancer risk in patients [1-4]. However, the risk has been consid-
ered much smaller than the benefits of using a CT scan to diag-

nose accurately patient abnormalities for effective therapies [5]. The risk 
must be minimized based on as low as reasonable achievable (ALARA) 
[6]. In the principle of ALARA, the radiation optimization is more im-
portant in comparison with radiation dose reduction. Dose reduction is 
relatively easy to be achieved by reduction of tube current; however, 
this approach decreases image quality. In radiation optimization, image 
quality is more important than patient dose [7]; thus, before obtaining 
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ABSTRACT
Background: It is necessary to have an automated noise measurement system 
working accurately to optimize dose in computerized tomography (CT) examina-
tions.
Objective: This study aims to develop an algorithm to automate noise measure-
ment that can be implemented in CT images of all body regions.
Materials and Methods: In this retrospective study, our automated noise 
measurement method consists of three steps as follows: the first is segmenting the 
image of the patient. The second is developing a standard deviation (SD) map by cal-
culating the SD value for each pixel with a sliding window operation. The third step 
is estimating the noise as the smallest SD from the SD map. The proposed method 
was applied to the images of a homogenous phantom and a full body adult anthropo-
morphic phantom, and retrospectively applied to 27 abdominal images of patients. 
Results: For a homogeneous phantom, the noises calculated using our proposed 
and previous algorithms have a linear correlation with R2 = 0.997. It is found that the 
noise magnitude closely follows the magnitude of the water equivalent diameter (Dw) 
in all body regions. The proposed algorithm is able to distinguish the noise magni-
tude due to variations in tube currents and different noise suppression techniques 
such as strong, standard, mild, and weak ones in a reconstructed image using the 
AIDR 3D algorithm.
Conclusion: An automated noise calculation has been proposed and successfully 
implemented in all body regions. It is not only accurate and easy to implement but 
also not influenced by the subjectivity of user. 
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the image using the smallest possible dose, an 
image of sufficient quality to diagnose the pa-
tient must be achieved.

There are a number of parameters to char-
acterize image quality, including noise mag-
nitude, low contrast detectability, and spatial 
resolution [8, 9]. Parameters of image quality 
have been usually evaluated using a standard 
phantom of standardized size [10, 11]. The 
evaluation of image quality, using the standard 
phantom, is very good for assessing dependen-
cy on controllable variables, such as tube cur-
rents, tube voltage, pitch, reconstruction filter, 
and beam width [9]. However, image quality 
is also influenced by uncontrollable variables, 
such as body size and body region [7, 12-14]. 
The controllable and uncontrollable variables 
must be considered simultaneously to opti-
mize purposes [7]. 

Noise magnitude is probably the most im-
portant parameter for characterizing image 
quality. Measurements of noise magnitude in a 
clinical image, are usually performed manual-
ly based on calculating the standard deviation 
(SD) within a region of interest (ROI) in the 
most homogeneous region [15, 16]. For a more 
comprehensive approach, noise is character-
ized using the noise power spectrum (NPS) 
[17-19]. However, manual measurements of 
noise are not practical in clinical settings, es-
pecially in busy medical centers. Moreover, 
the determination of a ROI manually is very 
subjective and influenced by the experience of 
the relevant medical personnel. A small shift 
in the position of the ROI leads into different 
estimates of the noise magnitude. Consequent-
ly, the development of algorithms is essential 
to have robustly automated noise calculations.

Recently, Christianson et al. have devel-
oped an algorithm to measure automatically 
the noise in clinical CT images without deter-
mining a ROI [20]. The algorithm consists of 
four steps as follows: 1) soft tissue segmenta-
tion based on density slicing of the CT images 
using Hounsfield unit (HU) values from 0 to 
+100 2) SD calculation for every pixel to cre-

ate a SD map using a sliding window opera-
tion 3) a SD histogram developed from the SD 
map of the CT image and 4) the determination 
of the noise magnitude as the most frequent 
SD in the SD histogram. They reported that 
the approach successfully distinguished noise 
due to kernel reconstruction variations, dose 
variations, and slice thickness variations for 
three CT scanner models [20]. The result of 
the automated noise calculation is called the 
global noise level because the automated noise 
was identified as the most frequent SD level in 
soft tissues. There are two limitations to this 
method. The first is that the method of auto-
mated noise calculation may only be applied 
to the abdomen region because noise calcula-
tion is carried out by calculating the SD map 
on the region where the majority composition 
is soft tissue [20]. The second is that the global 
noise magnitude is an overestimate compared 
to the predicted noise magnitude. They re-
ported that the average differences between 
automated and manual noise measurements, 
using the subtraction method, were 3.4% and 
4.7% for phantom and clinical CT images, re-
spectively [20]. However, many later studies 
reported that the subtraction of two image sets 
resulted in a residual noise image with twice 
the noise magnitude of an individual image 
[21-23].

More recently, Chun et al. have proposed 
an algorithm of automated calculation of CT 
noise in patient images using a structure co-
herence feature [24]. The algorithm used the 
ROIs located carefully in the coherence re-
gion; therefore, it may overcome the over-
estimation of global noise from the previous 
method [20], although they did not report any 
comparison with that study. The algorithm 
consists of four steps, including subcutane-
ous fat tissue segmentation, the measurement 
of structure coherence feature, determination 
of homogeneous ROIs and estimation of the 
noise magnitude. Although this method is not 
limited just to the abdomen, it cannot be ap-
plied to the head since the method determines 
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a homogeneous area limited to fat that has a 
unique HU range, i.e. from −150 to −30 [24].

It is very important to develop an automatic 
calculation of noise magnitude applied gener-
ally to all parts of the body. It should not be 
limited to soft tissue or fat or certain other tis-
sues. This study aims to develop an algorithm 
for automated noise calculation applied to all 
body regions. The current algorithm does not 
use any segmentations of particular organ or 
body composition. Instead, the segmentation 
is carried out overall patient image, and the 
SD map is calculated for the whole image; in 
addition, the magnitude of noise is simply de-
termined in the most homogeneous area.

Material and Methods

Algorithm of automated noise cal-
culation

In this retrospective study, noise is gener-
ally determined by calculating the standard 
deviation (SD) within a homogeneous area in 

the region of interest (ROI). Automated noise 
calculations require the ROI determination to 
be done automatically. The algorithm of auto-
matic noise calculation in the proposed study 
consists of some steps as follows: 1) Segment-
ing images using an algorithm proposed previ-
ously by Anam et al. [25], and converting of 
the pixel values outside the image of patient 
(Figure 1a) to be 0 (zero) value. 
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I x y inside the patient

I x y
otherwise


= 


    (1)

The result of segmentation and conversion 
of the background values to 0 is shown in Fig-
ure 1b. This ensures that the area outside the 
patient is truly homogeneous.

2) Calculating the SD value for each pixel 
with a sliding window operation is performed 
using a specific kernel size. The SD value is 
calculated using the equation for each pixel:
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Where n × n is the size of the sliding win-

Figure 1: The steps of algorithm of automated noise calculation. (a) Original computerized to-
mography (CT) image, (b) Image of patient after converting area outside the patient to zero 
value, (c) Image of the standard deviation (SD) map, (d) The region of interest (ROI) for noise 
calculation is located in the most homogeneous area of image, i.e. the smallest value of the SD 
map.
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dow. After the SD calculation is completed in 
one pixel, the window shifts to next one pixel 
for calculating the SD value as before. The 
process is repeated to calculate the SD values 
for all pixels. Based on this process, the SD 
map is obtained. An example of the SD map is 
shown in Figure 1c. The effect of kernel size 
was also examined on the magnitude of noise 
for a homogeneous phantom. 

3) The estimation of noise magnitude from 
the SD maps is determined in the most homo-
geneous areas. The determination of the most 
homogeneous area from the SD map is easy 
to do, i.e. the area with the smallest SD value. 
It should be noted that we expect the smallest 
value of SD to be within the patients, not out-
side them. Therefore, the value of the SD out-
side the patient is set to 100 HU to ensure that 
the measured smallest SD is inside the patient.

( ) ( )
0

0

100,  ( , ) 0.5
,

, ,  n

if SD x y
SD x y

SD x y otherwise
≤

= 


      (3)

A value of 0.5 HU is chosen because it is 
almost predictable that the SD values are 
zero outside of patients (as described earlier); 
while there is no SD value smaller than 0.5 
HU within patients or phantoms. After the SD 
background value is converted to 100, the SD 
values are sorted from smallest to largest, and 
then the smallest SD value is taken. The loca-
tion of the smallest value of SD indicates the 

most homogeneous area, and this smallest SD 
value is considered the noise magnitude of an 
image.

( )min( , ) nSD x yσ =                                    (4)

The smallest SD position is determined by 
the equation:
[ ], ( )min min nx y argmin SD=                          (5)

An example of ROI in the most homoge-
neous area is shown in the blue box in Figure 
1d. For evaluation, we also tried to compare 
the noise magnitude from the one of the small-
est SD with a mean of 2 smallest SDs up to 
a mean of 10 smallest SDs. The value of the 
average N smallest SD is calculated by the 
equation:

1

1 N

i
iN

σ σ
=

= ∑                                                  (6)

Phantoms, patients, and data ac-
quisition

To test the algorithm of the automated noise 
calculation, the algorithm was applied to imag-
es of a homogenous phantom (Toshiba Medi-
cal Systems Ltd., Tokyo, Japan) (Figure 2), 27 
abdominal images of patients, and an adult an-
thropomorphic phantom (Kyoto Kagaku Ltd., 
Kyoto, Japan) (Figure 2).

Figure 2a and b show a photograph of ho-
mogeneous phantom and an axial image of 

Figure 2: (a) Homogeneous phantom, (b) an axial image of the phantom.
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the phantom, respectively. The phantom was 
scanned using a MSCT Toshiba AlexionTM 4 
using parameters, including120-kVp tube volt-
age, 5 mm slice thickness, 1 s rotation time, 25 
cm field of view (FOV), and 1.375 pitch. The 
algorithm was applied to the images of the ho-
mogenous phantom with different kernel sizes 
ranging from about 2 mm × 2 mm to about 
15 mm × 15 mm, and different numbers (N) 
of ROIs ranging from 1 to 10. The phantom 
was also scanned using different tube currents 
ranging from 25 mA to 150 mA, and images 
were reconstructed with the three-dimensional 
adaptive iterative dose reduction (AIDR 3D) 
algorithm using different noise suppression 
levels (weak, mild, standard and strong). 

Our algorithm was applied retrospectively 
to abdominal images of 27 patients scanned 
using a Siemens Emotion 6 CT Scanner, and 
reconstructed by SyngoCT 2006A software. 
The input parameters of the scans were 130 
kVp, 0.6 s rotation times, tube current modu-
lation with a reference of 95 mAs, 2 mm slice 
thickness, and field of view (FOV), ranging 
from 253-370 mm. The noise results of the 
proposed method were compared to those of a 
previous method [20].

The anthropomorphic phantom was scanned 
from underneath the pelvis to the apex of the 
head. Figure 3a-c shows the adult anthropo-
morphic phantom, a CT localizer radiograph 
of the phantom in the anterior-posterior (AP) 
direction and axial images of the phantom, re-
spectively. The phantom was scanned using 
a MSCT Toshiba AlexionTM 4. The phantom 
was scanned to get a CT localizer radiograph, 
prior to helical scanning from the apex of the 
head to the bottom of the pelvis using a fixed 
tube currents (25, 50, and 100 mAs) along the 
z-axis. The axial images were reconstructed 
using method of the filtered back projection 
(FBP) with a FC13 reconstruction filter. Scans 
were performed with a pitch of 1.5, a rotation 
time of 1 s, field of view (FOV) of 40 cm, slice 
thickness of 7 mm, and “large” filter type.

We calculated the noise automatically us-

ing our proposed algorithm and calculated Dw 
in the axial image of each slice automatically 
using an algorithm proposed previously [25] 
based on following equation:

12 1
1000

ROI
w

AD HU
π

 = +  
                    (7)

Where AROI and HU  are the area of the 
phantom after contouring and the average HU 
value of the phantom, respectively. The image 
noise of each slice should correlate with Dw 
value. Based on the comparison of the noise 
level and the calculated Dw for every slice, the 
accuracy of the automated noise algorithm can 
be established. 

Results

Noise magnitude in the homogeneous 
phantom images

Determination of automatic noise based on 

Figure 3: (a) An anthropomorphic adult male 
phantom, (b) localizer radiograph in the an-
terior-posterior (AP) direction, (c) axial im-
ages for head, thorax, abdomen and pelvis 
images. 
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the smallest SD value is probably a random 
event. To test this, the average noise up to N 
= 10 of the smallest SD values was evaluated 
and the results are shown in Figure 4 (a). The 
noise value rises linearly (R2 = 0.9897) with 
the number, N. The difference based on us-
ing one of the smallest SD and the average of 
the N = 10 smallest SDs is still below 1.0% as 
shown in Figure 4 (b). Thus, the use of only 
the smallest SD is a good descriptor for the 
noise of an image. The noise value is probably 

determined by the size of the ROI or the slid-
ing window. Figure 4c confirms that the noise 
value of a homogeneous phantom increases as 
the size ROI increases from around 2 mm × 2 
mm to 15 mm × 15 mm.

The relationships between the minimum SD, 
the tube current and type of noise suppression 
in AIDR 3D image reconstruction are shown 
in Figure 5. Figure 5a shows that the noise 
decreases with the increase in tube current; 
in addition, Figure 5b shows that the noise 
magnitude depends on the type of noise sup-
pression. As expected, AIDR 3D with stronger 
noise suppression settings results in less noise 
than AIDR 3D standard, and AIDR with the 
weaker suppression results in more noise than 
the standard one.

Figure 4: (a) The noise of average N small-
est standard deviations (SDs), (b) The per-
centage difference of noise in the use of one 
of region of interest (ROI) and N ROIs, and 
(c) The noise magnitude of a homogeneous 
phantom as a function of the ROI size (or ker-
nel size).

Figure 5: (a) The relationships between noise 
magnitude and tube current in the homoge-
neous phantom, and (b) The graph showing 
noise magnitude for different types of noise 
suppression of the adaptive iterative dose 
reduction (AIDR 3D) image reconstruction, 
i.e. strong, standard, mild and weak ones. 
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Comparison of the proposed algo-
rithm and previous algorithm

To validate the results of the proposed al-
gorithm, it was compared with those from 
the previous algorithm [20]. The comparison 
was carried out on the homogeneous phantom 
and 27 abdominal images (for the patient im-
ages except the abdomen, comparison can-
not be made because the previous algorithm 
was only applicable to the abdomen where 
soft tissue is the majority component). The 
comparison of the noise magnitude from the 
proposed and previous methods in the ho-
mogeneous phantom is shown in Figure 6a. 
There is a linear correlation between both with 
an R2 value of 0.9968. The noise magnitude 
from the proposed method is about half of the 
value of the global noise measured from the 
previous method. The box-whisker graphs for 

noise magnitude measured using the proposed 
and the previous methods in the abdominal 
image are shown in Figure 6b, which clearly 
show that the noise magnitude of our proposed 
method is about half the global noise mea-
sured from the previous method. The global 
noise from the previous method has two out-
lier data, i.e. 13.4 HU and 16.8 HU, while our 
proposed method has no outlier data.

Automated noise calculation on the 
whole body anthropomorphic phantom

The noise magnitudes calculated by the pro-
posed method for three fixed tube currents, 
including 25, 50 and 100 mA on full body of 
anthropomorphic phantom are shown in Fig-
ure 7a, and the box-whisker graphs of noise 
are shown in Figure 7b. These show that the 
proposed algorithm can distinguish the mag-

Figure 6: (a) The relationship between the 
noise magnitude from the proposed meth-
od and the previous method in the homo-
geneous phantom, and (b) The box-whisker 
graph for noise magnitude from the pro-
posed method and previous method in the 
abdominal image.

Figure 7: (a) The noise magnitude calculated 
by the proposed method overall anthropo-
morphic phantom for three fixed tube cur-
rents (25, 50 and 100 mA), and (b) The box-
whisker graphs of noise from the completely 
anthropomorphic phantom for three fixed 
tube currents.
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nitude of noise for variations due to different 
tube currents from head to pelvis of the an-
thropomorphic phantom.

The dependencies of the noise values and the 
water-equivalent diameter (Dw) from the head 
to the bottom of the pelvis are shown in Figure 
8 for three fixed tube currents. It is seen that 
the noise magnitude closely follows the mag-
nitude of Dw. In the pelvic and abdominal area, 
noise is relatively high because the Dw value 
is also relatively high; in addition, in the area 
of the thorax, noise decreases because Dw also 
decreases (lung area), and in the upper thorac-
ic region, noise rises again since Dw rises (the 
presence of the phantom arm). Moreover, in 
the neck area, the noise decreases because the 
Dw is small, and finally the noise in the head 
area rises again because Dw rises. The increase 
of noise magnitude in the head area, especial-
ly at the bottom of the head area, exceeds the 
increase of Dw. All patterns were observed at 
a fixed current of 25 mA (Figure 8a, 50 mA 
(Figure 8b) and 100 mA (Figure 8c).

Discussion
Automatic noise calculation performed di-

rectly from the patient image is an important 
factor to optimize the radiation dose received 
by the patient. Automated dose calculation 
received by patients using the concept of 
size-specific dose estimate (SSDE) has been 
widely reported [15, 26-28]. While automated 
noise calculations performed directly from 
patient images have been reported previous-
ly [20, 24], they have been limited to certain 
body parts such as the abdomen or thorax. Our 
proposed algorithm is an improvement of the 
algorithm proposed previously [20, 24], such 
that it can be applied to calculate noise in all 
body regions without overestimating the pre-
dicted noise.

Automatic noise calculation in our proposed 
method is based on the fact that noise is usu-
ally measured in the most homogeneous area. 
The most homogeneous area can be easily de-
termined as the position of the smallest SD on 

the SD map of an image and noise can be iden-
tified as the smallest SD itself. The noise can 
be estimated by not only one of the smallest 
SD values but also, for example, the average 
of 5 or 10 of the smallest SDs. The data ob-
tained in this study shows that based on using 
the average of up to 10 of the smallest SDs, 
the noise is within 1% of the absolute smallest 
SD. The calculation of SD in a pixel is certain-
ly influenced by the size of the kernel of slid-
ing window (ROI size) so that the SD value 
increases if the size of the sliding window in-
creases, as confirmed in this study. The size of 
the ROI must be consistent. We have followed 
the AAPM recommendation of using an ROI 
of 10 mm × 10 mm [29] for noise calculation. 

Figure 8: The noise and the water-equivalent 
diameter (Dw) along the z-axis from the head 
to the bottom of the pelvis. (a) 25 mA, (b) 50 
mA, and (c) 100 mA.
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Automated noise calculation must be able 
to distinguish noise magnitude for different 
input parameters. Our proposed algorithm is 
able to distinguish the noise magnitude due to 
variations in tube currents and different levels 
of noise suppression in a reconstructed image 
using the AIDR 3D algorithm, as reported pre-
viously by Ang et al. [30] using the manual 
method. There is a linear correlation between 
the noise calculated automatically using our 
proposed algorithm and the previous algo-
rithm [20] for homogeneous phantoms. The 
noise magnitude measured using the proposed 
algorithm is about half of that calculated using 
the earlier algorithm [20]. Since the previous 
algorithm measured global noise, the noise 
magnitude is approximately the same as the 
noise magnitude measured by the subtraction 
method, which is known to be about twice the 
actual noise in an image [21-23].

The results of the earlier automated noise 
calculation [20] are quite consistent with oth-
ers if the soft-tissue composition of the abdo-
men was relatively dominant. However, in any 
other cases, for example when soft tissue is 
not dominant or localized in a sufficient area, 
that method was not able to predict noise ac-
curately. From 27 abdominal patient images, 
there were two images where that method did 
not successfully predict noise. Based on the 
use of our novel proposed method, this did not 
happen. Our novel algorithm remains accurate 
even when the composition of the soft tissue 
in the image is small or non-localized. 

We found that our proposed method could 
be applied to all body regions, from the head 
to the bottom of the pelvis. For example, for 
the anthropomorphic phantom Figure 8 shows 
that, the noise magnitude corresponds to the 
magnitude of the water equivalent diameter 
(Dw) and this result is consistent with previous 
studies [12, 31]. A slightly different situation is 
seen in the head region because there are many 
bones in the head so that the result of beam 
hardening artifact causes noise in the head to 
be slightly larger than that outside the head re-

gion [32]. An anthropomorphic head image is 
shown in Figure 9a, with its SD map shown in 
Figure 9b. For comparison, Figure 9 c shows 
the SD map obtained from the previous algo-
rithm [20]. There is almost no soft tissue with 
HU value from 0-100 and the segmented ar-
eas are only in the boundary between the head 
and the air outside of the head. Thus, the cor-
responding SD histogram shown in Figure 9d 
does not display any the actual global noise 
values. It shows a global noise value of around 
41 HU, while based on our proposed method, 
the value is around 5 HU, i.e. just higher than 
the expected value. Thus, our proposed meth-
od can be implemented in the head region.

The results show that our proposed method 
can accurately calculate noise automatically 
in clinical images of patients. If the automated 
noise calculation method is combined with au-
tomated spatial resolution determination [14, 
33] and automated organ HU measurement 
[34], the quantization of patient image quality 
can be accomplished more comprehensively. 
Furthermore, by combining automated quan-
tification of image quality with automated pa-
tient dose calculation in a SSDE metric [35, 
36], there would be opportunities to optimize 
the CT protocol more intuitively.

This study has several limitations as fol-
lows: first, implementation of the proposed 
method in the head, thorax and pelvic images 
of patients has not been carried out. The im-
plementation is only carried out on an anthro-
pomorphic phantom. Implementation of our 
automated noise calculation on different body 
parts, especially in the head region, and com-
parison with results obtained from the obser-
vation of radiologist experts still has needed 
to be carried out. Second, in this study, the re-
sults of automated noise calculation have not 
been compared with the results of patient dose 
for dose optimization process. In a forthcom-
ing study, a direct comparison between patient 
dose and image quality will be investigated, 
for example using the figure of merit (FOM) 
approach [37].

Automated Noise Measurement in CT
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Conclusion
We successfully developed an automated 

noise methodology implemented in CT images 
of any regions of the body. It was successful-
ly implemented in images of a homogeneous 
phantom, an anthropomorphic phantom, and 
several patient images. Our method is able to 
distinguish the noise magnitude due to varia-
tions in input parameters such as tube currents 
or image reconstruction algorithms. As expect-
ed, in the abdominal patient images, the noise 
measured using our method is about half of the 
global noise. Our method produces noise mag-
nitudes, which closely follow the magnitudes 
of the water equivalent diameter in all body 
regions. The method is easily implemented, 
robust, and accurate. It could potentially be 

used to optimize CT protocols. Implementa-
tion of automated noise calculation along with 
automated size-specific estimation may pro-
vide a convenient tool for optimizing patient 
doses according to the ALARA principle.
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Figure 9: (a) Example of anthropomorphic head image for automated noise calculation, (b) The 
standard deviation (SD) map along with region of interest (ROI) position using our proposed 
algorithm, (c) The SD map using previous algorithm, (d) Corresponding SD histogram and value 
of global noise is about 41 Hounsfield unit (HU). 
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