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Introduction

Subjective tinnitus is defined as an internally generated auditory 
phantom percept in the absence of any external auditory stimuli 
[1-3]. It is a prevalent disorder; about 5–15% of the population of 

the western societies suffer from chronic tinnitus and the quality of life 
of 1–3% of the population is influenced by severe tinnitus, which is ac-
companied by depression in 50%, and by insomnia in 40% of the cases 
[4-6]. Hearing impairment is experienced in approximately 80% of all 
people with tinnitus, and in these cases, the frequency range of hearing 
loss corresponds to the frequency spectrum of the phantom sound [7, 
8]. Nevertheless, approximately 25% of individuals with tinnitus have 
normal hearing thresholds. On the other hand, a hyperacusis disorder, 
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which is defined as an increased sensitivity to 
the sensed sounds, is frequently experienced 
by people with tinnitus.

While tinnitus is associated with a complex 
pathophysiology and its underlying neuronal 
mechanisms is highly challenging and un-
known, it is widely accepted that the auditory  
deafferentation is the most frequent etiology of 
tinnitus, regardless of having hearing impair-
ment [9]. Several researches show that tinnitus 
is accompanied with spontaneous variations in 
auditory and non-auditory regions [10].  

According to neuroimaging studies, the hu-
man brain is assumed as an organization with 
the different degrees of the small-worldness 
[11-14]. Such organization is able to optimize 
the functional integration and segregation 
[15] and therefore efficiently transfer the in-
formation among its different pairs of nodes 
[16, 17]. A number of previous studies have 
investigated the topological alteration of the 
brain network and the reduction of the small-
worldness in brain-related pathologies. These 
changes were led to reduce the proficiency of 
transferring the information in global and lo-
cal brain regions reported in disorders such 
as Schizophrenia, Parkinson, and Alzheimer 
[18]. Tinnitus network was investigated in [19] 
to identify variation of topological patterns in 
comparison with healthy individuals. The au-
thors found distinct properties of connectivity 
networks in tinnitus and healthy subjects and 
hypothesized that correlated uncertainty with 
auditory deafferentation is led to change the 
topology of tinnitus network.

In the present paper, we attempt to assess the 
feasibility of tinnitus detection via topologi-
cal properties of the brain networks. The main 
contribution of this work is automatically dis-
tinguishing healthy and tinnitus subjects based 
on the changes of graph-theory-based metrics 
extracted from functional connectivity of sen-
sor space EEG data. In the next section, the 
EEG data acquisition, processing approaches, 
and network analysis methods are briefly out-
lined. The results of connectivity and network 

analysis are presented in Section 3. In section 
4, the conclusion of the results, discussion, 
and limitations of the work as well as the sug-
gestion for future studies is presented.

Material and Methods

Participants
In this case- control study, eight participants 

with tinnitus (two females; mean age: 48.2 
years; range: 28–59) and eight healthy indi-
viduals (three females; mean age: 30.8 years; 
range: 25–42) were included in the study. All 
individuals with tinnitus suffered from chron-
ic tinnitus for duration of at least 12 months 
(range: 1–30 years). Our exclusion criteria 
were pulsatile tinnitus, Meniere’s disease, sei-
zure, physical disability and neurological dis-
orders, e.g. brain tumors. None of the subjects 
in control group has suffered from tinnitus. All 
subjects were given written informed consent 
and informed about the aims of the experi-
ment before it. Extra written consent in accor-
dance with the Ethical Committee of the Sa-
hid Beheshti University of Medical Sciences 
(SBMU) was given to individuals with tinni-
tus. All subjects from two groups are reported 
to be right-handed. To assess the severity of a 
perceived tinnitus handicap, the standardized 
Persian version of Tinnitus Handicap Inven-
tory (THI) questionnaire was presented to the 
participants with tinnitus. A tinnitus handicap 
is clustered in five categories, including slight 
(0–16), mild (18–36), moderate (38–56), se-
vere (58–76) and catastrophic (78–100) [20]. 
In our study, one participant was characterized 
by a slight, mild moderate, five ones and one 
catastrophic handicap.

EEG Data Acquisition
Three 5-minute eyes open resting state EEG 

data were recorded from tinnitus participants. 
The EEG recordings of healthy individuals 
obtained as the 1st Iranian BCI Competition 
(iBCIC) were held in National Brain Mapping 
Laboratory (NBML) (http://nbml.ir/) during 
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2-minute eyes open resting state. All partici-
pants were instructed to pay attention to a neu-
tral color background in the front screen for the 
duration of recording and attempt not to think 
about anything in particular during the whole 
experiment. All EEG data were recorded using 
a 64-channel g.tec (http://www.gtec.at/) EEG 
system (g. HIamp) in NBML. The reference 
channel was placed on right ear lobes for all 
individuals. The sampling frequency of 1200 
Hz was selected for tinnitus group and 2400 
Hz for controls. The sampling frequency of 
controls was resampled to 1200 Hz in a pre-
processing step.

Data Processing 
EEG data were preprocessed using EEGLAB 

[21] and Fieldtrip [22] toolboxes for MAT-
LAB (MATLAB R2016a, The MathWorks, 
Inc, Natick, Massachusetts, United States). 
High-pass (the cut-off frequency of 2 Hz) and 
band-stop filters (to exclude 50 Hz power line 
noise and its harmonic frequencies) were ap-
plied to the raw data. Re-referencing the data 
to the common average reference and manual-
ly rejecting the artifacts by visual inspections 
were accomplished using EEGLAB. The in-
dependent component analysis (ICA) was em-
ployed to remove artifactual components (e.g. 
eye blinks, eye movements, heartbeat, and 
muscle artifacts). The preprocessed data, con-
taining the least amount of artifacts, was seg-
mented into 18 trials of 5-second (90 seconds) 
when the whole time was in the range of previ-
ous resting-state studies [23, 24]. Fieldtrip was 
utilized for further processing of the EEG data 
in order to perform the connectivity analysis. 
Graph-based network measures were gener-
ated by using Brain Connectivity Toolbox 
(BCT) [25] from the extracted connectivity 
matrices.

The Functional Connectivity Analy-
sis

The functional connectivity was computed 
between all pairwise electrodes (sensor space). 

The connectivity values were calculated for 
each eight-frequency band based on previous 
researches in tinnitus [19, 26, 27] including 
delta (2–3.5 Hz), theta (4–7.5 Hz), alpha1 (8–
10 Hz), alpha2 (10–12 Hz), beta1 (13–18 Hz), 
beta2 (18.5–21 Hz), beta3 (21.5–30 Hz) and 
gamma (30.5–44 Hz). Graph theory analysis 
was applied to the eight 63×63 connectivity 
matrices, which was computed for each sub-
ject.

Weighted Phase Lag Index (WPLI) 
Connectivity Analysis

WPLI connectivity measure was primarily 
introduced by [28] as an extension to the Phase 
Lag Index (PLI). WPLI estimates the phase 
leads and lags between two interacted time 
series (i.e. the electrode or source signals). A 
great value of WPLI connectivity would be 
obtained in the specified frequency when two 
signals have high functional coherence [29]. 
The imaginary part of the cross-spectrum ap-
plied in WPLI leads to reduce the influence of 
common sources of noise (e.g. heartbeat) and 
variations in the synchronization phase. Fur-
thermore, WPLI is highly sensitive to properly 
detect phase interactions of spatially close sig-
nals and shows robustness to volume conduc-
tion [28, 30, 31].
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where Sxyt is the cross-spectrum of the time-
series x and y at the time point t, and sgn is the 
sign function. Function imag(.) returns only 
the imaginary component of the cross-spec-
trum

SVM Classification Approach
A support vector machine was adopted to 

classify the tinnitus group from healthy con-
trols. SVM works vigorously with a small 
number of training samples and a large num-
ber of features [32]. As the labeled samples are 
used for training, SVM is a supervised classi-
fier, which can be applied with several kernels 
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such as linear, polynomial, Multilayer Percep-
tron (MLP) and radial basis function (RBF) 
kernel [33-35]. The specified network mea-
sures were extracted from connectivity matri-
ces as classification features. A combination 
of feature ranking and Principal Component 
Analysis (PCA) was applied to the features to 
provide the feature set with a minimum redun-
dancy. Generally, PCA known as a classical 
approach achieves optimum linear transform 
to generate the mutually uncorrelated features. 
Firstly, all features normalized using linear 
scaling to the unit range, which transformed 
the feature vector to be in the range of 0 and 
1. Subsequently, the entropy-based approach 
was used for feature ranking. In our study, we 
selected the 60 top ranked features to yield the 
best classification performance with a reason-
able running time. Finally, the new feature 
vector was produced by keeping the first few 
principal components of PCA. Non-linear 
SVM classification with RBF kernel was ac-
complished. Owing to the limited number of 
samples, Leave-One-Out Cross-Validation 
(LOOCV) strategy was used to evaluate the 
classification performance. 

Network Analysis
Brain networks are constructed by the cal-

culation of functional couplings between dif-
ferent regions of the brain. Complex network 
analysis quantifies the network topologies 
with a few neurobiologically relevant mea-
sures to characterize the fundamental traits 
of the complex systems. Brain as a complex 
network might be notably characterized by the 
complex network analysis. [25]. A network 
can be mathematically represented by a set 
of nodes and links between node pairs. Node 
strength is the sum of the weights of links or 
edges connected to a node.

                         i ij
j N

k w
∈

= ∑

where N is the set of all nodes in the network 
and the links (i,j) are related by the connection 

weight wij.
The shortest weighted path length between 

two nodes i and j is determined by:
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where f is a map (e.g. an inverse) from the 
weight to length and w
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↔
 indicates the short-

est weighted path between nodes i and j.
The averaged shortest path length between 

all the node pairs in a network is known as 
the characteristic path length and is inversely 
related to the global efficiency of the network 
[12, 25]. The characteristic path length [16] of 
the network is defined as:
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where n shows the number of nodes.
The global efficiency [36] of the network is 

characterized by:
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The number of triangles around a node i is 
defined as a basis for measuring segregation:
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where aij indicates the status of the connec-
tion between nodes i and j: aij=1 when the link 
(i,j) exists; aij=0 when there is no connection 
between i and j (aij=1 for all i) [25]. 

A clustering coefficient reflects the degree 
that the connected nodes in a graph tend to 
form clusters and can illustrate the degree of 
local connectivity in the network [12, 16]. The 
clustering coefficient of the network is de-
scribed by:

                 ( )
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Local efficiency of the network [36] is cal-
culated by:
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where djh(Ni) is the length of the shortest 
path between j and h, that contains only neigh-
bors of i.

The global efficiency and characteristic path 
length measure the integration of the network, 
while the clustering coefficient and local effi-
ciency are measures for the network functional 
segregation. Complex networks, characterized 
with the small-worldness [37], are defined as 
the networks with the great clustering coeffi-
cient and low characteristic path length. 

                         rand

rand

C
CS L
L

=

where C and Crand are the clustering coef-
ficients, and L and Lrand are the characteristic 
path lengths of the tested network and a ran-
dom network, respectively. 

Accordingly, the small world organizations 
have simultaneously notably segregated and 

integrated topologies [15, 25]. It has been pre-
viously reported that neuropathological disor-
ders cause the change of the small-worldness 
with a reduction in global integration [38]. In 
this study, some neurobiological measures of 
the brain networks were characterized to ex-
tract the functional integration and segrega-
tion of the brain regions.

Results
The WPLI connectivity metric was deter-

mined between the pairwise electrode signals 
for both tinnitus and control groups at eight 
frequency bands using Brain Connectivity 
Toolbox for MATLAB. 

Figure 1 represents the variation of averaged 
WPLI connectivity values as a function of fre-
quency in control and tinnitus groups. Prin-
cipally, higher values of averaged WPLI for 
the tinnitus group are observed in 2–3.5 Hz, 
4–5.2 Hz and 9–10 Hz considered in the range 
of delta, theta, and alpha1 frequency bands, re-
spectively. In addition, the figure indicates the 
highest connectivity values in the alpha band 
for both groups. The observed WPLI peak 

Figure 1: Variation of averaged WPLI connectivity as a function of frequency for tinnitus and 
control groups.
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in the alpha frequency range for both groups 
might be related to power values, which be-
come maximum in the alpha band.

Figure 2 indicates the averaged WPLI ma-
trices are calculated between the pairwise 
combination of electrode signals for control 

Figure 2: Averaged WPLI connectivity strength matrices in 8 frequency bands, left: healthy con-
trols, middle: tinnitus, right: significant difference matrices, representing Wilcoxon signed-rank 
test for the significance of any difference across two groups for all connections.
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and tinnitus groups in each frequency band. 
Furthermore, the significant differences in the 
calculated functional connectivity between 
tinnitus and controls are presented in the fig-
ure (right column). In the right column the 
yellow pixels correspond to node pairs with 
the significantly higher WPLI connectivity in 
tinnitus compared to controls, the light blue 
pixels correspond to node pairs with the sig-
nificantly greater connectivity in controls rela-
tive to tinnitus, and the dark blue areas show 
node pairs with no significant difference of 
functional connectivity between controls and 
tinnitus group.

According to the significant differences 
(p<0.05), the electrodes T7 (middle temporal) 
and CP5 (centroparietal) displayed relatively 
the most couplings with other electrodes in 
the alpha2 frequency domain. Further, the Fz 
(midline frontal) and the FP1 electrode (ante-
riofrontal) indicated a large number of con-
nections with other electrodes in the alpha1 
and gamma frequency bands, respectively. In 
addition, the significant differences implied 
that the delta, theta, and gamma bands showed 
stronger averaged WPLI for tinnitus group, 
while greater averaged WPLI was recognized 
in the alpha and beta bands for controls.

Figure 3 indicates four brain network mea-
sures calculated based on WPLI connectivity 
matrices in different frequency bands for both 
groups: the node strength, clustering coeffi-
cient, local efficiency and characteristic path 
length. As the distribution of these measures 
did not have a normal distribution, Wilcoxon 
signed-rank test was performed to investi-
gate the main effect of groups (tinnitus and 
control) for each of the measures. The Wil-
coxon signed-rank test expressed a signifi-
cant effect of groups in some frequency bands 
(p<0.05). Figure 3.a illustrates that the aver-
aged node strength of control group was sig-
nificantly stronger than the tinnitus subjects in 
the alpha2, beta2 and beta3 frequency bands 
(p<0.05), while in the delta, theta, and beta1 
frequency domains the tinnitus network had 

significantly greater averaged node strength 
than the controls (p<0.05). There were no sig-
nificant effects for the alpha1 (p=0.7528) and 
gamma (p=0.9672) frequency bands.

The averaged clustering coefficients of two 
groups are shown in Figure 3b. The averaged 
clustering coefficient of tinnitus group was 
significantly larger than controls in the alpha2, 
beta2, and beta3 frequency bands (p<0.05), 
while the healthy control group showed signif-
icantly larger averaged clustering coefficient 
than tinnitus in the delta, theta, and alpha1 
frequency domains (p<0.05). No significant 
effect was observed for the beta1 (p=0.1819) 
and gamma (p = 0.7632) frequency bands.

The averaged local efficiency of two groups, 
presented in Figure 3c demonstrates that for 
tinnitus network this measure was significant-
ly larger than healthy controls in the alpha2, 
beta2 and beta3 frequency bands (p<0.05). 
The averaged local efficiency of controls 
was significantly greater than tinnitus net-
work in the theta and alpha1 frequency bands 
(p<0.05). No significant effects were observed 
for the delta (p = 0.5378), beta1 (p=0.9618) 
and gamma (p=0.8426) frequency bands.

Figure 3d displays the averaged characteris-
tic path length of two groups. The averaged 
characteristic path length of tinnitus group 
was significantly greater than controls in the 
alpha2, beta2 and beta3 frequency bands 
(p<0.05). The healthy controls showed signifi-
cantly higher averaged clustering coefficients 
than tinnitus in theta and beta1 frequency do-
mains (p<0.05). No significant effects were 
observed for the delta (p=0.1564), alpha1 (p 
= 0.2417) and gamma (p=0.1429) frequency 
bands.

Table 1 demonstrates the results of the SVM 
classifier using RBF kernel. Four brain net-
work measures including node strength, clus-
tering coefficients, local efficiency and charac-
teristic path length were applied as the feature 
vector in each frequency band. In order to 
quantify the classifier performance accuracy, 
sensitivity and specificity of the classification 
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were computed. The maximum classification 
accuracy of 91.7% was identified in the delta, 
alpha1, beta1, and beta2 frequency bands. The 
high classification accuracy of 91.7% was ob-
served in delta, alpha1, and bata1 frequency 
bands when beta2 shows the highest value 
of 100%. The maximum sensitivity of 100% 
was obtained in the beta1 and beta2 frequency 
bands; and the specificity of 100% in the del-
ta, alpha1, and beta2 frequency domains. The 
relatively low accuracy of 75% was recog-
nized in the alpha2 and beta3 bands. The low-
est sensitivity and specificity of 66.7% were 
observed in the alpha2 and beta3 frequency 
bands, respectively. All accuracy, sensitivity, 
and specificity were 100% in the beta2 fre-

Figure 3: Averaged network measures: a. node strength, b. clustering coefficient, c. local effi-
ciency and d. characteristic path length.

Frequen-
cy bands

Accuracy 
(%)

Sensitiv-
ity (%)

Specific-
ity (%)

Delta 91.7 83.3 100
Theta 83.3 83.3 83.3

Alpha1 91.7 83.3 100
Alpha2 75.0 66.7 83.3
Beta1 91.7 100 83.3
Beta2 100 100 100
Beta3 75.0 83.3 66.7

Gamma 83.3 83.3 83.3

Table 1: classification results of SVM in eight 
different frequency bands.
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quency band.

Discussion
In this study, resting state EEG data were ex-

plored to distinguish the tinnitus network from 
healthy individuals in different frequency 
bands through the sensor level EEG analysis. 
To detect the underlying neurophysiological 
differences, network analysis was performed 
based on WPLI functional connectivity, which 
is able to identify true variations in phase-syn-
chronization and has less sensitivity to com-
mon noise sources [28]. 

Based on our findings, the significant differ-
ences in the functional connectivity between 
tinnitus and healthy groups were more domi-
nant in the alpha band [39]. The WPLI con-
nectivity declined in the alpha band for the tin-
nitus group, which supports the findings [40]. 
The reduction of functional connectivity in the 
alpha band could be due to reduced activity of 
alpha waves in the auditory cortex, predicted 
in Global Brain Model (GBM) of tinnitus [41]. 

In our study, the variations of connectivity 
patterns in the tinnitus group were observed 
within the frontal, temporal and parietal re-
gions. Several EEG, MEG, and fMRI-based 
studies have reported non-auditory areas, es-
pecially the prefrontal cortex (PFC) are in-
volved in tinnitus [10, 42, 43]. Specifically, 
an MEG study has reported that the tinnitus 
neural activity alterations are more dominant 
in the temporal, left frontal and right parietal 
regions [44]. Furthermore, the first evidence 
for changes of long-range synchronization in 
non-auditory areas was presented [45], which 
showed the association of right frontal and pa-
rietal lobes in tinnitus. It has also been reported 
that the connectivity pattern of chronic tinni-
tus is disrupted in PFC [46]. The authors [46] 
examined the tinnitus brain networks through 
the functional and effective connectivity anal-
ysis of fMRI data and deduced that PFC is the 
main integrative cortical hub, which plays the 
main role in the phantom sound perception in 
tinnitus. Accordingly, PFC should be consid-

ered as a key region involved in tinnitus, when 
associated with both emotional and sensory 
factors of tinnitus [47]. These findings are all 
in consistent with our results, which identi-
fied the significant disruption of connectivity 
network in middle temporal (T7 corresponds 
to BA 21), supramarginal gyrus (CP5 cor-
responds to BA 40), frontopolar (FP1 corre-
sponds to BA 10) and intermediate frontal (Fz 
corresponds to BA 08) regions.

The results of our graph theoretical analysis 
illustrated that the clustering coefficient and the 
local efficiency of tinnitus network showed an 
enhancement compared to controls in alpha2, 
beta2, and beta3 frequency bands, while a sig-
nificant reduction of these two measures could 
be observed in the delta, theta, and alpha1 fre-
quency bands for the tinnitus group. On the 
other hand, the characteristic path length of 
tinnitus network significantly increased in the 
alpha2, beta2, and beta3 frequency bands and 
showed a reduction in theta frequency band. 
Thus, the tinnitus network indicated relatively 
stronger segregation and weaker integration 
in alpha2, beta2, and beta3 frequency bands. 
The results would be interpreted that the tin-
nitus network is more segregated than the 
healthy group in higher frequencies, while has 
the weaker global efficiency. Thus, high-fre-
quency bands show that reduced small world 
attributes with the reduced integration, as we 
expected [38]. Furthermore, the tinnitus group 
presented lower segregation and greater in-
tegration relative to the healthy group in the 
theta frequency domain. This finding would 
be interpreted as the deviation of tinnitus net-
work from the small world topology towards 
the randomness in the theta band.  

Four-network measures applied as features 
to distinguish between tinnitus and healthy 
individuals led to the high sensitivity, speci-
ficity, and accuracy for all frequency bands. 
The highest accuracy, sensitivity or speci-
ficity of 100% was observed in several fre-
quency bands. The lowest accuracy of 75% 
was acquired in alpha2 and beta3 frequency 

Tinnitus Detection based on Network Analysis
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bands. The smallest values for sensitivity and 
specificity were 66.7 in alpha2 and beta3, re-
spectively. In general, the classification results 
were relatively lower in the alpha2 and beta3 
compared to other frequency bands. The best 
classification performance was achieved in the 
beta2 frequency band with accuracy, sensitiv-
ity, and specificity of 100%. 

As the potential limitation of the present 
study, sensor space analysis of the EEG data 
cannot specify the appropriate underlying 
neural activity of the brain. Although WPLI 
connectivity measure was employed to reduce 
the sensitivity to common noise sources, one 
can consider the possible noise effect in the 
results. Hence, it might be more desirable to 
employ the source-localized EEG for further 
connectivity and graph theory analysis in fu-
ture studies. In addition, the limited number 
of subjects can be assumed as the main limita-
tion of this study. Thus, the larger sample size 
would be suggested in future works. However, 
the lack of matching between two groups in 
terms of hearing levels was unavoidable due 
to the high prevalence of hearing loss in indi-
viduals with tinnitus.

Conclusion
The results demonstrate that four network 

measures i.e. the node strength, clustering co-
efficients, local efficiency and characteristic 
path length could successfully discriminate 
the tinnitus from the healthy normal group. 
The experiment supports the feasibility of 
quantifying brain networks to assess this spe-
cific pathophysiological characteristic of the 
brain in diagnostic/treatment procedures as 
our fundamental contribution.
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