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Evaluation of the Droplet Collapsibility 
in Inhalation Drug Delivery through a 3D 
Computational Study
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Abstract
Background: Several multiphase flow analyses have been developed to predict 
the fate of particles used in inhalation drug delivery; however, the collapse of drop-
lets during their passage through respiratory tract has not been investigated.
Objective: To assess the probability of droplet collapse in the upper respiratory 
tract.
Methods: A 3D model of mouth-to-second generation airway after the trachea 
was developed with application of a computational fluid dynamics modeling. A new 
parameter, the droplet collapsibility index (DCI), was defined to evaluate the prob-
ability of droplet collapse during the release of droplets through the model.
Results: The results stated that droplets with diameter between 0.1 and 1 μm are 
at higher risk of collapse. Also, the most probable region of collapse was found to be 
the glottal bend. The condition becomes progressively worse by increasing the rate 
of breathing air flow. By increasing the inspiration flow rate from 10 to 30 L/min, the 
droplet collapsibility rised from 0.75 to 2.25—exceeding the collapsibility threshold.
Conclusion: Results of the current study can be used in evaluation of collapsibil-
ity of particles in design of inhalation drug delivery systems.
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Introduction

Inhalation of drug suspended in respiratory air as an aerosol is an ef-
ficient, fast and safe method for delivery of pharmaceutics into the 
human body; this method is also more convenient for the patient [1, 

2]. The inhalation drug delivery (IDD) is prescribed for the treatment 
of many disease conditions including asthma [3, 4], chronic obstruc-
tive pulmonary disease [5, 6], cyctic fibrosis [7], lung cancer and lung 
transplantation disorders [8, 9]. Functional characteristics such as large 
surface area of the lungs, dense vascularization, thin and highly perme-
able epithelial layer and proximity of the alveoli to the pulmonary blood 
capillary beds make the respiratory tract a proper route for drug deliv-
ery into the blood circulation [10-13], and consequently into the whole 
body, the so-called “systemic drug delivery” (SDD) [14]. In this way, 
many of the neurological disorders, e.g., migraine [15, 16], Alzheimer 
and Parkinson [17, 18], can effectively employ the IDD for delivery of 
pharmaceutics. Different studies have been conducted to evaluate the 
ability of the pulmonary route for delivery of vaccines [19], genes [20], 
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hormones [21], growth factors [22], and some 
other drugs such as interleukins and heparins 
[23, 24]. Also, the IDD has been considered as 
an efficacious delivery option for calcitonin in 
patients suffering from osteoporosis [25].

Success of a SDD plan depends on several 
important factors. For instance, the half-life 
of many newly-synthesized drugs is exces-
sively shorter than the time elapses to reach 
the targeted area by conventional routes of ad-
ministration [14], and thus, a faster releasing 
technique is required. On the other hand, the 
drug substance in the respiratory tract is more 
likely to enter the blood circulation without 
any changes by numerous factors exist in the 
gastrointestinal tract [26]. Consequently, to 
satisfy the specifications, the pharmaceutics 
should be prepared in certain formulations and 
also released under delimited plans which are 
closely in relation with the physical features 
of the drug and its carrier. Such requirements 
have led to plan for strategies in design of 
SDD based on drug synthesis methods [27-29] 
and aerosolization techniques [30-32].

The efficacy of the IDD during breathing is 
influenced by physical characteristics of the 
dispersed particles or droplets, e.g., size and 
shape, density and surface properties [33], 
and changes in inhalation flow regime which 
is characterized by inspiration rate, tidal vol-
ume and breath holding time [34-36]. In other 
words, neglecting some physiological reac-
tions such as mucosal clearance [37], one can 
evaluate the behavior of the therapeutics re-
leased into the inspired air using multiphase 
flow principles. Many of the related computa-
tional and experimental studies have focused 
on analysis of two-phase flow including in-
haled air and drug particles [38-40], and the 
health impact of inhaled toxic particles [41]. 
Effects of transient and turbulent air flow on 
particle deposition in the first four airway gen-
erations have been evaluated using computa-
tional fluid dynamics (CFD) method [42]. Tur-
bulent flow has also been employed to model 
inhalation in extrathoracic airways (ETAs), 

disregarding drug as the second phase [43]. 
In particle deposition, numerical studies have 
been performed to investigate the effects of 
transient flow, inlet conditions, out-of-plane 
angles of the first four bronchi and presence of 
cartilaginous rings around the trachea on par-
ticle deposition and air flow patterns [44, 45]. 
A numerical study, validated by experiments, 
showed that the efficiency of the IDD may be 
improved by optimal combination of particle 
size, particle release position and inhalation 
pattern [46]. Furthermore, the role of flow rate 
and particle size on the deposition of particles 
in the upper airways has been examined using 
CFD method [47].

Majority of studies have demonstrated that 
the physical state of the drug particle, as the 
second phase dispersed in the air, can be as-
sumed as non-deformable [42, 46-48]. The as-
sumption of rigidity of solid phase is due to 
negligible viscosity of the air and relatively 
high modulus of elasticity of particles. How-
ever, in situations where the inhaler devices 
release the liquid pharmaceutics into the re-
spiratory tract, interaction forces between the 
droplets and the air will become important. 
Application of unsustainable forces from the 
environment may lead to collapse of the drop-
lets resulting in failure of the targeted delivery 
plan, and also overdose in some untargeted ar-
eas. Therefore, introducing a new parameter is 
required to establish the collapsibility of the 
droplets which has not been investigated in 
previous studies. On the other hand, various 
published numerical and experimental analy-
ses related to prediction of the fate of the dry 
powder particles in respiratory tree estimated 
that the critical locations of the unwanted early 
depositions are the ETAs, i.e., mouth-to-throat 
tract [47]; however, most of these studies have 
modeled the ETAs separate from the tracheo-
bronchial airways. The objective of this study 
was therefore to evaluate the intactness of the 
droplets used in the IDD through an inclusive 
model of pathways from mouth to the second 
respiratory airway generations branching after 
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the trachea. Furthermore, the roles of some 
effective parameters on collapsibility of the 
droplets such as droplet size and inspired flow 
rate were investigated.

Materials and Methods

Theory
Droplet collapse
Fundamentally, a droplet will collapse when 

all the external forces acting on the surface 
and volume of the droplet, exceed the resul-
tant internal forces. Therefore, the condition 
for the initiation of the droplet collapse can be 
written as:

 d  +  d  > i
A V

T A B V f∫ ∫
                               

(1)

where T and B denote tractions and the body 
forces acting on enclosing surface A and oc-
cupying volume V of the droplet, respectively; 
fi represents internal forces. By definition, the 
medium of interest for internal forces has been 
restricted to the molecules and their interac-
tions. Gravitational body force is negligible at 
molecular scale. Additionally, since the trac-
tions may be merely originated from the car-
rier medium, i.e., inspired air, it is rational to 
institute them using the non-dimensionalized 
Reynolds number, Re, describing the ratio of 
inertial to viscous forces, as expressed as fol-
lows:

e
uhR ρ
µ

=
                                                 

(2)

where u, ρ, and μ represent surrounding veloc-
ity, density and viscosity of the fluid respec-
tively; h is the characteristic length.

On the other hand, the main force which ag-
gregates the molecules of the droplet and re-
sists their separation against external forces is 
the surface tension that can be represented by 
Weber dimensionless number, We. Such num-
ber represents the ratio of inertial forces to the 
surface tension forces, as follows:

2

e
v dW ρ
σ
′

=
                                              

(3)

in which ρ is density of the droplet and σ de-
notes surface tension coefficient. Parameters 
v and d denote droplet velocity and diameter, 
respectively. By elimination of the inertial 
forces between Re and We, the remaining ratio 
appears as a practical index for identification 
of the collapse of the droplet. The deduced 
droplet collapsibility index (DCI) will be fi-
nally obtained as:

2v dDCI
u h

ρ µ
ρσ
′

=
                                      

(4)

Such parameter becomes influential when 
the density ratio is quite large. The value of the 
DCI as a function of anatomical location in the 
ETAs and the early generations is developed.

 
Turbulent flow
The turbulent nature of the inspired air flow 

in the respiratory tract has been simulated by 
Renormalization Group k-e (RNG k-ε) model 
which is based on instantaneous solving of 
Navier-Stokes equations and can be intro-
duced by two transport equations [43]: 

( ) ( ) ,
i

k
i k eff k kx

i i

u k G S
x x

ρ α µ ρε∂
∂

∂ ∂
= + + −

∂ ∂
(5)

( ) ( ) 1i

k
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i i

u C G
x x k

ερ ε α µ ∂
∂

∂ ∂
= + −

∂ ∂

2

2 kC S R
k ε
ερ + −

                 
  (6)

The above equations relate two terms of the 
turbulent kinetic energy, k, and energy dissipa-
tion rate, ε. Parameters u, ρ and xi represent the 
velocity, density and position vector, respec-
tively. The effective turbulent viscosity of the 
fluid, μeff, has been correlated to the laminar 
viscosity, μ, as:

2

3

ˆ ˆ1.72
ˆ 1

d d
Cν

ρ κ ν ν
εµ ν

 
=   − + 

             (7)

where 
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ˆ effµ
ν

µ
=

                                                   
(8)

and Cn = 100. Moreover, αk represents the in-
versed effective Prandtl number for turbulent 
kinetic energy, Gk is the generation of turbu-
lence energy due to the mean velocity gradi-
ents, and Sk is the source of energy produced. 
The parameter Re can be derived by the fol-
lowing equation [43]:

( )3 2
0

3

1 /
1

C
R µ
ε

ρν ν ν ε
βν κ
−

=
+

                       
(9)

where
Sκν
ε

≡
                                                   

(10)

and ν0 = 4.38, b = 0.012 and Cm = 0.0845. Ad-
ditionally, C1 and C2 in the two main equations 
are respectively, equal to 1.24 and 1.68, based 
on analytical methods [43].

Modeling
Geometry
Complex geometry of the upper airways 

causes unusual flow patterns in this region 
[43]. In addition to the enhanced probability 
of the droplet collapsibility, this may alter the 
commonly considered inlet conditions for the 
trachea. Therefore, it is important to simulate 
an inclusive model of the ETAs and the first 
three generations. The model contains the oral 
cavity, the larynx, the pharynx, the glottis, the 
trachea and the first and second generation 
bronchi (Fig. 1). Knowing what will happen 
within the following generations can be sat-
isfactorily deduced by such analytical inter-
pretations. The geometry is asymmetric in the 
sagittal plane, but the out-of-plane orientations 
of the bronchi in the coronal plane have been 
disregarded [39]. The tracheal cartilaginous 
rings have been included, as their contribution 
to the flow regime has already been suggested 
[49].

Figure 1: Three-dimensional model of mouth-to-second generation airways; (a) the 3D model, 
(b) coronal section of the intrathoracic part of the model, (c) sagittal section of the extrathoracic 
part of the model, (d) magnification of branches, (e) magnification of tracheal cartilaginous 
rings, and (f) magnification of the glottal bend
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The geometric data of the ETAs used in the 
model are averaged dimensions of human up-
per airways, and those are associated with 
bronchial tree represented in Table 1, based on 
asymmetric model of the human lung devel-
oped previously [50]. The structural meshing 
of the model has been developed using 17,555 
nodes and 82,519 quadrilateral elements. 
Based on the aforementioned constitutive 
equations, the generated model has been ana-
lyzed through computational fluid dynamics 
method utilizing commercial software FLU-
ENT version 6.3.

Boundary conditions and load-
ing

All the lateral walls have been assigned by 
no slip boundary condition for the fluid, and 
the inlet of the tract has been assumed to be 
under the velocity-inlet condition valued in 
accordance with those listed in Table 2, for 
normal and deep breathing flow rates [43].

The analysis included two phases of carrier 
medium and drug droplets. The carrier medi-
um was assumed to be natural air at 25 °C with 
negligible effect of temperature on the density 
[43]. Since the maximum value of the non-di-
mensionalized Mach number for fluid does not 
exceed 0.3 [45], we assumed that the inspired 
air was incompressible.

Material properties
The laminar density and viscosity of the 

atmospheric air (described in Eq. 7) were as-
sumed to be 1.225 kg/m3 and 1.8×10-5 kg/m.s, 
respectively [43]. For the second phase of the 
mixture, i.e., the droplets, the physical proper-
ties of the water were considered [6]; there-
fore, the values of 998 kg/m3 and 0.001 kg/m.s 
were set for density and viscosity [48, 49]. The 
shape of the droplets was also assumed to be 
spherical [31, 49]. The size of the droplet was 
assumed to vary from 0.1 to 100 μm, as one of 
the variables in the study.

Solution criterion of the multiphase flow 
analysis was based on the Eulerian model 
which solves the continuity and momentum 
equations for each phase separately and then 
the coupling is performed by coupling the 
pressure values between the phases.

Results 
The parameter DCI was defined to designate 

the power of the viscous forces, acting by the 

Table 1: Geometrical characteristics of the intrathoracic part of the model. In the labels, T stands 
for trachea, R for right and L for left branches. Also, the first number after the letter denotes the 
generation number.

Generation number Figure label Diameter
(mm)

Length
(mm)

Orientation angle
(degree)

0 T 18 125 0

1 L1 11 22 35

1 R1 12 50 73

2 L21 7.3 15.6 63

2 L22 9 26 15

2 R21 8 11 44

2 R22 7.5 16 48

Table 2: Velocity inlet magnitudes for two 
flow rates
Flow rate
(L/min)

Velocity
(m/s)

10 0.53

30 1.59

Droplet collapsibility in inhaled drug delivery
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carrier medium on the droplet surface, against 
the surface tension forces. Noticeably, the DCI 
depends on the fluid mechanical features of the 
airways which are variable from one anatomi-
cal location to another. Therefore, it gained dif-
ferent values along the model. Figure 2 shows 
how the DCI varies along anatomical sites in 
sagittal and coronal sections of the model, for 
the droplets of 1 μm in diameter and the an 
airflow rate of 10 L/min.

Variation in size of droplets dispersed in the 
inspired air can alter the distribution pattern 
and magnitude of the DCI. Figure 3 illustrates 

how alteration in the size influences the in-
tactness of the droplets during their passages 
through the airways. Results are presented for 
different anatomical regions including oral 
cavity, the pharynx, the larynx and the glot-
tis, superior part of the trachea, inferior part of 
the trachea, and the first and second generation 
airways. The value of DCI was developed for 
four logarithmic sizes from 0.1 to 100 μm.

Any alteration in the airflow rate may result 
in variation of breathing pattern which con-
sequently influences the behavior of the drug 
droplets. The diagram of Figure 4 indicates a 
noticeable rise in the value of the DCI once air 
is inspired by two flow rates of 10 and 30 L/
min. Besides the overall increase in the amount 
of DCI for higher flow rates, variations in the 
DCI were also greater among the anatomical 
sites. The graph of the 30 L/min inspiration 
rate describes that DCI exceeds the collapse 
threshold (unit DCI) at the end of the pharynx. 
However, the maximum DCI occurred at the 
superior part of the trachea by a magnitude of 
approximately 2.25. In accordance with the 
diagram of Figure 4, the contours of the DCI 
in the ETAs are demonstrated in Figure 5 in-
dicating that at higher flow rates, the mouth 

Figure 3: Average regional values of the DCI 
for four droplet sizes (µm)

Figure 2: Contours of the DCI for (a) sagittal section of the extrathoracic part of the model, (b) 
serial cross-sections normal to the pathway, and (c) coronal section of intrathoracic part of the 
model
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is still remained safe against the collapsibility 
of droplets. However, the risk area is extended 
upward to the pharynx.

Discussion
Using CFD method, the collapsibility of the 

droplet drugs was analyzed through the hu-
man respiratory tract by introducing a droplet 
collapsibility index. Moreover, effects of the 
deep breathing (represented by increased air-
flow rate) and changes in the droplet size on 
the collapse of the droplets were investigated.

Since the DCI represents the balance of the 
viscous and surface tension forces around and 
inside the droplet, the value of DCI equal to 
1, is considered as the collapsibility threshold, 
i.e., once it exceeds this value, the external 
viscous forces becomes greater and the droplet 
collapses. Under normal breathing condition 
and droplets with 1 µm in diameter, the maxi-
mum value of the DCI is approximately 0.75 

occurred at the glottal bend. As the velocity of 
the carrier phase is of moderate magnitude, the 
internal surface tension forces exist between 
the molecules of the droplet can tolerate the 
viscous forces and the DCI is lower than 0.5 
in most of the anatomical locations. However, 
exceptionally at the glottal bend, the velocity 

Figure 4: Average regional values of the DCI 
for two droplet sizes and two typical flow 
rates

Figure 5: Contours of the DCI in sagittal section of 1 µm-sized droplets for (a) Q = 10 L/min, and 
(b) Q = 30 L/min
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increases considerably due to reduction in the 
sectional area. Roughly, all the previous inves-
tigations with multiphase modeling of the IDD 
reported the maximum velocity at the glottal 
bend [39, 46, 47]. Moreover, the curvature of 
the glottis violates the uniformity of the veloc-
ity vectors across the section (Fig. 2b), leading 
to generation of adverse vortices at the follow-
ing regions. This may move a considerable 
percentage of the droplets to the anterior wall 
of the trachea and hinder or even trap the rest 
and finally collapse them. This phenomenon 
has also been mentioned in other studies [46]. 
Results showed that early-branched intratho-
racic airways of the pulmonary tree gain high-
er values of the DCI in comparison with the 
inferior trachea because of relatively higher air 
velocities in that region; this finding is com-
patible with results of other numerical studies 
[39, 46]. Nevertheless, sequential branching 
of the generations reduces the percentage of 
the flow entering each of them. As shown in 
Figure 3, after a noticeable fall through the 
trachea, there is a slow rise in the DCI starts; 
however, due to the enormous number of the 
branches deep inside the lung, the share of the 
airflow rate and consequently the air velocity 
decreases significantly. Such reduction in the 
velocity is notably more prominent than that 
of diameter (characteristic length) of bronchi-
oles. With a preliminary assessment, the DCI 
for the trachea is roughly 19.5 times greater 
than that for the alveolar ducts. This is why, 
viscous forces become remarkably weaker 
than surface tension, and therefore, it is pre-
dicted that the probability of a droplet collapse 
decreases.

When different diameters of 0.1, 1, 10 and 
100 μm were taken into account, results 
showed a non-linear behavior. Among dif-
ferent diameters, lowest values of the DCI 
occurred in droplets with largest diameters. 
In other words, droplets with 10 μm diam-
eter followed the pattern of the 100 μm-
sized ones except with slightly more mag-
nitudes of DCI. Fundamentally, dispersion 

of the larger droplets in the respiratory 
air decreases the turbulence intensity and 
then the average velocity of the mixture; 
therefore, the viscous forces are remained 
weaker than the surface tensions. However, 
the results of droplets 0.1 μm in diameter 
stated that the collapsibility is not directly 
related to the droplet size 1 μm droplets 
were of higher risk of collapse (Fig. 3) due 
to the mutual effects of the velocity changes 
and diameter on the surface tension forces.

The possibility of the collapse of droplets 
was strongly influenced by the inlet condi-
tions. Clearly, once the patient deeply inhales 
the air mixed with the drug droplets, i.e., when 
the flow rate increases, a dramatic rise in the 
viscous forces is generated around the droplet. 
In this way, by a three times deeper inspira-
tion, the DCI is elevated up to 2.2—implying 
that the viscous forces excessively surpass the 
internal tension forces. Another important dif-
ference observed in 30 L/min air flow rate was 
that the site of maximal DCI moves forward to 
the superior part of the trachea instead of the 
larynx and the glottal bend. This alteration is 
due to effects of the increased turbulence in-
tensity as previously described [39, 47], ana-
tomical curvature of the glottis, and higher ve-
locities. In other words, higher viscous forces 
act on the droplets when they gain maximum 
velocities at the end of the glottis entering the 
trachea, although the main rise (approximately 
from 0.5 to 1.9) in the DCI is still due to the 
sectional area reduction in the glottal bend. 
This is also shown in Figure 5 for 1 μm drop-
lets under 10 and 30 L/min air flow rates.

In conclusion, it was shown that under nor-
mal breathing conditions, the droplets with 0.1 
to 1 µm in diameter are at higher risk of col-
lapse, remarkably at glottal bend. Also, deep 
inhalations immoderately menace the intact-
ness of droplets and spread the probable ar-
eas of collapsibility from glottal bend to the 
superior regions of trachea. Therefore, if the 
target of the IDD is the intrathoracic airways 
or the alveoli, the liquid carriers, specifically 
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between 0.1 and 1 μm, may collapse while 
passing through the ETAs and overdose 
these areas.
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