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ABSTRACT 
 
Background: In addition to passive immunotherapy using anti-HER2 monoclonal 
antibodies, active immunotherapy via HER2 targeting is an interesting approach to 
inducing specific anti-tumor immune responses. We have recently reported the 
immunogenicity of HER2 subdomains following DNA immunization and HER2 protein 
boosting. In the present study, we evaluated the immunogenicity of different HER2 
extracellular subdomains for the induction of anti-HER2 antibody response in BALB/c 
mice. Objective: To investigate and characterize antibody responses to human 
recombinant proteins of HER2 extracellular subdomains in immunized mice. Methods: 
Four subdomains of HER2 extracellular domain were expressed in E.coli; subsequently, 
purified recombinant proteins were intraperitoneally injected in BALB/c mice with 
Freund's adjuvant. The anti-HER2 antibody response was detected by ELISA, 
immunoblotting and flow cytometry. Results: All the four HER2 subdomains along 
with the full extracellular domain (fECD) were able to induce specific anti-HER2 
antibodies. Although anti-HER2 subdomains antibodies could not react with eukaryotic 
recombinant fECD protein by ELISA, they were able to recognize this protein by 
immunoblotting under both reduced and non-reduced conditions. Furthermore, only the 
sera of mice immunized with fECD protein could recognize native HER2 on HER2 
overexpressing tumor cells (>99%) by flow cytometry. Moreover, fECD immunized 
mice sera inhibited the proliferation of tumor cells by XTT assay. Conclusion: The 
prokaryotic recombinant proteins of HER2 extracellular subdomains are immunogenic, 
yet the induced specific antibodies do not react with the native HER2 protein due to the 
paucity of post-translation modifications and /or distortion of the native conformation of 
isolated HER2 extracellular subdomains which might be potentially effective for 
induction of cell mediated immune response against HER2. 
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INTRODUCTION 
 
HER2 protein is normally expressed, in the embryonic tissues, at higher levels 
compared with their normal adult counterparts (1). This protein is overexpressed in 20-
25% of breast cancer patients (2). Besides breast cancer, HER2 overexpression in 
colorectal, ovarian, pancreatic and prostate cancers has been reported to be associated 
with poor prognosis (3,4). Structurally, the HER2 molecule is a 185 kDa protein 
composed of extracellular, transmembrane and intracellular parts (5). Owing to its 
expression profile and roles in tumor biology, HER2 is considered as a therapeutic 
target for cancer immunotherapy (6). In this regard, both active and passive 
immunotherapy approaches have been employed for the prevention and treatment of 
HER2 positive human malignancies (7,8). Passive immunotherapy, in which approved 
therapeutic antibodies such as Trastuzumab and Pertuzumab are used, is currently 
employed to treat HER2+ breast cancer patients (9,10). Trastuzumab is the first 
humanized therapeutic monoclonal antibody approved by the US FDA in 1998 for the 
treatment of metastatic breast cancer (11). However, antibody based passive 
immunotherapy encounters several problems such as the need for repeated injections, 
tumor resistance and side effects of the antibodies. Such drawbacks imply the need for 
alternative modalities such as active immunotherapy (12,13).  
The main goal of active immunotherapy is to activate the host immune system to 
eradicate tumor cells with minimal toxicity (14). Active immunotherapy against breast 
cancer in mice and humans has been partially successful with advantages including low 
toxicity, high specificity and immunologic memory (15). Owing to the spontaneous 
cellular and humoral immune responses to HER2 found in breast cancer patients, HER2 
is considered as an appropriate candidate self-antigen for active immunotherapy (16,17). 
Accordingly, different forms of HER2 protein have been employed to induce cellular 
and humoral immune responses against HER2 molecule (18,19).  
We have recently reported the immunogenicity of these subdomains following DNA 
immunization and HER2 protein boosting (20). In the present study, we employed the 
recombinant proteins of the HER2 extracellular subdomains so as to investigate their 
immunogenicity in mice. 
 
 
MATERIALS AND METHODS  
 
Construction of HER2 extracellular subdomains and eukaryotic fECD plasmids. 
HER2-pCMV-XL4 (OriGene Technologies, Rockville, MD, USA) construct was 
employed as a template for the amplification of four HER2 extracellular subdomains 
and the full extracellular domain (fECD) using specific primers (Table 1). Domain I 
(DI) and DIII PCR products were separately cloned into pET-22b (+) after digestion 
with XhoI and HindIII enzymes, and DII and DIV were subcloned into pET-32a (+) 
following digestion with SalI and XhoI enzymes. The fECD PCR product was 
subcloned into pCMV6-Neo following digestion with HindIII and XbaI enzymes as 
previously described in more detail (20).  
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Table 1. Specific primers used for subcloning of extracellular full domain (fECD) and 
subdomains of human HER2. 

Domain 
specific 
primers 

Sequence * 
Amplicon 
(bp) size 

fECD-forward 5'-AAAAGCTTGCCACCATGGAGCTGGCGGCCTTGTGC-3' 
1956 

fECD -reverse 5'-AAATCTAGATCACGTCAGAGGGCTGGCTCTCTGCTCG-3' 
DI-forward 5'GGTTTTTCTTAAGCTTACCCAAGTGTGCACCG -3' 

509 
DI-reverse 5'-AAGAAAAAAACTCGAGGCGGTTGGTGTC -3' 

DII-forward 5'-GTCGACTTCCCCAGCTCTGCTACCA-3' 
548 

DII-reverse 5'-CTCGAGCTTGCTGCACTTCTCACAC -3' 
DIII-forward 5'-GGTTTTTCTTAAGCTTGACGTGGGATCCTGC -3' 

609 
DIII-reverse 5'-AAGAAAAACCCTCGAGCACACACTCGTCC -3' 
DIV-forward 5'-GTCGACAATTCGTGCACACGGTGC -3' 

545 
DIV-reverse 5'-CTCGAGCGTCAGAGGGCTGGCTCT -3' 

*The restriction enzyme sites are underlined. 

 
 
Expression of HER2 extracellular subdomains. Through heat shock method, the DI- 
and DIII-HER2-pET-22b (+) constructs were transformed into the competent BL21-
DE3 E. coli strain (Novagen, Madison, WI, USA) and the DII- and DIV-HER2-pET-
32a (+) constructs were transformed into the competent Rosettagami E. coli strain 
(Novagen) (21). The transformed colonies of the HER2 extracellular subdomains were 
selected by culturing on Luria–Bertani (LB) agar plates containing the selective 
antibiotics and were confirmed by colony PCR with specific primers. The selected 
colonies were cultured in LB broth medium containing ampicillin (100 μg/ml) for DI 
and DIII and ampicillin, kanamycin, tetracycline and streptomycin for DII and DIV; the 
recombinant protein expression was further induced by adding 1mM isopropyl-1-thio-β-
D-galactoside (IPTG) ( Sigma, St. Louis, USA). Expression of recombinant proteins 
was assessed by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-
PAGE). 
To optimize the expression conditions, we studied different expression vectors (pET22b 
(+), pET32a (+) and pET28b (+)), hosts (BL21-DE3and Rossettagami), induction points 
(OD600: 0.5, 0.7 and 0.9), cultivation temperatures (18, 22 and 37ºC) and cultivation 
times (1, 2, 3, 4, 5 and 12 hrs following induction); the most acceptable subdomain 
conditions were selected for a large scale protein production. 
Purification and characterization of recombinant proteins. The pellets of 
transformed bacteria (related to DI, DII and DIII) were lysed with cold lysis buffer 
(NaH2PO4 100 mM, Tris base 30 mM and NaCl 100 mM, pH = 8) and incubated on ice 
for an hour, followed by sonication. The pellet of sonication was dissolved in the buffer 
A (NaH2PO4 100 mM, Tris base 10 mM, urea 8 M, NaCl 100 mM and imidazole 30 
mM with pH = 8). The supernatant was filtered, mixed with Ni-NTA resin (Qiagen, 
Hilden, Germany) and shacked for 45-60 min on the platform shaker. The bound 
proteins were eluted with buffer A containing the gradually increasing concentrations of 
imidazole. The purified recombinant protein fractions were dialyzed against phosphate 
buffered saline (PBS) (20). DIV recombinant protein was soluble in the supernatant of 
sonication buffer, hence directly applied to the Ni-NTA resin. The purity of the purified 
proteins was determined by SDS-PAGE and verified with immunoblotting via 
polyclonal rabbit anti-His-tag antibody (Abcam, Cambridge, UK). 
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Production and purification of eukaryotic recombinant fECD protein. The CHO-
K1 cells (Chinese hamster ovary cells), (National Cell Bank of Iran, Pasture Institute of 
Iran, Tehran, Iran) were transfected with the fECD-pCMV6-Neo construct and pCMV6-
Neo mock vector without HER2 gene for negative control by JetPEI (PolyPlus 
Transfection, Illkirch, France). Briefly, 75×103 cells/1000 μl per well cells were grown, 
overnight, in RPMI-1640 culture medium (Gibco, life Technologies, Paisley, UK) 
containing 10% fetal bovine serum (Gibco) in a 12-well culture plate (Nunc, Denmark) 
at 37°C. The medium was then replaced with fresh culture medium. Four micrograms of 
fECD- pCMV6-Neo construct was added to 4 ϻl JetPEI prepared reagent at 200 ϻl total 
volume; the mixture was subsequently incubated at room temperature for 20-30 min. 
This DNA-JetPEI complex was added onto the cells. To specify the presence of fHER2, 
the supernatant of transfected cells was evaluated by ELISA following 48 hr incubation. 
The stable clones were selected under 700 ϻg/ml G418 (Gibco) and high producer 
clones were chosen through limiting dilution method. After large scale cultivation, the 
supernatant was collected and purified using an affinity chromatography column 
constructed from 5 distinct anti-HER2 monoclonal antibodies (2A8, 1T0, 1F2, 1H9 and 
1B5) (22) coupled with NHS activated Sepharose 4B. The recombinant proteins were 
eluted with Glycin-HCl buffer (0.2 M, pH= 2.5) and immediately dialyzed against PBS. 
The purified proteins were subsequently monitored by ELISA and characterized by 
SDS-PAGE and immunoblotting. 
Mice immunization protocol. Five 6- to 8-weeks-old BALB/c female mice (Pasteur 
Institute of Iran, karaj, Iran) were allocated to six groups for immunization by HER2 
extracellular subdomains (DI, DII, DIII, and DIV) and fECD recombinant proteins. 
Purified recombinant proteins were injected intraperitoneally together with complete 
Freund's adjuvant for the first injection; for other injections, on the other hand, 
incomplete Freund's adjuvant was employed at a dose of 50 μg for the first injection and 
25 μg for other injections. Five doses of antigens were administered over 2-week 
intervals. PBS and Freund's adjuvant were applied to the control group. The animal 
study was approved by the Avicenna Research Institute and Tehran University of 
Medical Sciences Ethical Committees. 
Measurement of anti-HER2 antibody in the immunized mice by ELISA. HER2 
extracellular subdomains and fECD recombinant proteins (DI 10 µg/ml, DII 2.5 µg/ml, 
DIII 10 µg/ml, DIV 1 µg/ml and fECD 0.5 µg/ml), were coated with 50 μl/well in a 96-
well ELISA plate (MaxiSorp, Nunc, Denmark) and incubated at 4°C overnight. After 
blocking with PBS-Tween 0.05% + skim milk 5%, serial dilutions of mice sera were 
added and incubated at 37°C for 1.5 hr. After that, horseradish peroxide (HRP)-
conjugated sheep anti-mouse immunoglobulin (Sina Biotec, Tehran, Iran) was added 
and incubated at 37°C for an hour. Tetramethylbenzidine (TMB) (Pishtazteb, Tehran, 
Iran) substrate was added and the reaction was halted by H2SO4 20%. The optical 
densities were measured at 450 nm by automatic ELISA reader (BioTek, Winooski, VT, 
USA). 
Reactivity of anti-HER2 subdomain antibodies with full HER2 ECD by 
immunoblotting. After dissolving in sample buffer, the eukaryotic recombinant fECD 
HER2 protein was separated on 10% SDS-PAGE gel under reduced and non-reduced 
conditions and transferred onto polyvinylidene difluoride (PVDF) membrane (Millipore 
Corporation, MA, USA) which was blocked with 3% skim milk and immunoblotted on 
the shaker with immunized mice sera at 1:100 dilutions for 1.5 hr at room temperature. 
After a plenary wash with PBS-Tween, an appropriate dilution of sheep-anti-mouse-Ig-
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HRP (Sina Biotec) was added to the membrane as a secondary antibody and the bands 
were visualized by chemiluminescence using the ECL detection system (GE Healthcare, 
Uppsala, Sweden) (21). 
Reactivity of anti-HER2 subdomain antibodies with native HER2 by flow 
cytometry. A human HER2 positive breast cancer cell line, BT474 (National Cell Bank 
of Iran), was utilized in order to evaluate the reactivity by flow cytometry of anti-HER2 
antibodies in immunized mice. Monolayers of the cells were grown in RPMI-1640 
culture medium containing 10% fetal bovine serum at 37°C and were detached by 
trypsin-EDTA (Gibco). Mice sera (1:100) were added to cells and incubated at 4°C over 
a period of an hour. After washing with PBS, FITC conjugated sheep anti-mouse 
immunoglobulin (Sina Biotec) was added and incubated in the dark at 4°C for 1 hr. 
Stained cells were detected by flow cytometry (Partec, Denmark) and data was analyzed 
with FlowJo software. 
The effect of anti-HER2 antibody on tumor cell proliferation by XTT assay. BT474 
cells (1×104/150 μl per well) were cultivated overnight with phenol red free RPMI-1640 
culture medium (Gibco) containing 10% fetal bovine serum in a 96-well culture plate 
(Nunc) at 37°C. Wells were then replaced with 100 μl/well serum free medium 
containing 1% fetal bovine serum. Subsequently, HER2 fECD immunized mice sera 
(1:400 and 1:800), normal unimmunized mice sera (1:400 and 1:800) as a negative 
control, sodium azide (0.5%) and Herceptin (Trastuzumab) (anti-HER2 monoclonal 
antibody, 10 µg/ml) as positive controls were separately added (in triplicate) to the 
wells and incubated at 37°C for 48 hr. XTT (Sigma, St. Louis, MO USA , 1 mg/ml) was 
mixed with PMS ( Sigma, 5 mM) at 1:200 ratio and 50 ϻl of the solution was added to 
each well and incubated for 3-4 hr at 37°C. The optical densities were measured at 450 
nm by automatic ELISA reader (BioTek). The percentage of growth inhibition was 
calculated by the following formula: 

Growth inhibition (%) =  ቀ
൫୓ୈ	େ୭୬୲୰୭୪	–	୓ୈ	୘୰ୣୟ୲୫ୣ୬୲൯

୓ୈ	େ୭୬୲୰୭୪
ቁ ൈ 100 

 
 
RESULTS 
 
Expression and purification of recombinant HER2 subdomains. 
The recombinant DI-DIV HER2 extracellular subdomains were successfully expressed 
in E.coli. The expressed recombinant proteins displayed the expected molecular weight 
as shown by SDS-PAGE (DI=23, DII=40, DIII=30 and DIV=40 KDa) (Figure 1). As 
detected by immunoblotting, all purified proteins reacted with anti-His tag antibody 
(Figure 2). Different parameters were assessed to optimize the expression conditions. 
Our results showed that DII and DIV subdomains, ligated in pET28b (+), pET22b (+) 
and pET32a (+) vectors, were not expressed in BL21-DE3 host. However, these two 
subdomains ligated in pET32a (+) were successfully expressed in Rosettagami host. 
The optimal conditions for the expression of HER2 extracellular subdomains are 
summarized in Table 2.  
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The effect of anti-fECD antibody on tumor cell growth. 
Only the fECD HER2 induced antibody reacted with native HER2 on tumor cells, hence 
the fact that its effect on the proliferation of BT474 cell line was evaluated by XTT 
assay. Anti-HER2 antibody of immunized mice sera induced 40% inhibition (1:400 
dilution) and 30% inhibition (1:800 dilution) on the growth rate of BT474 cells 
following 48 hr incubation, an inhibition rate similar to that induced by 10 ϻg/ml of the 
commercial anti-HER2 monoclonal antibody, Trastuzumab (Figure 6). 
 
 
 

 
Figure 6. Anti-proliferative effect of serum anti-fECD-HER2 antibody on BT474 cells. The 
results represent percent of cell growth inhibition obtained by XTT assay. The growth inhibition 
rates were calculated by formula presented in materials and methods. Normal mouse serum 
(1:400 dilution) and 0.5% sodium azide were employed as negative and positive controls, 
respectively. The solid bars present the standard error of the mean (SEM). 
 
 
 
DISCUSSION 
 
Two FDA-approved humanized anti-HER2 monoclonal antibodies, Trastuzumab and 
Pertuzumab, specific for extracellular subdomains 4 and 2 of HER2, respectively, are 
currently being made use of the treatment of breast cancer patients with HER2 
overexpression (23,24). In addition to passive immunotherapy, active immunization by 
HER2 molecule is an interesting approach to inducing specific anti-tumor immune 
responses. In this context, active immunotherapy may induce more effective therapeutic 
responses comparisons to passive immunization with monoclonal antibodies. Because 
of the short half-life of antibodies, they are cleared from circulation within a short 
period of time, curbing their therapeutic potential. However, active immunization can be 
a steady source of humoral and cellular immune response for patients (2). Furthermore, 
the immunogenicity of monoclonal antibodies hampers prolonged and repeated 
injections, while endogenous antibodies, generated following vaccination, are not 
expected to be immunogenic (25). These advantages have made active immunotherapy 
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more appealing. In the current research, we evaluated the immunogenicity of different 
HER2 extracellular subdomains with the objective of inducing anti-HER2 antibody 
responses in BALB/c mice.  
The HER2 subdomains were cloned, expressed and purified from a prokaryotic 
expression system. Based on the present findings, the prokaryotic HER2 subdomains 
and eukaryotic fECD were immunogenic and triggered anti-HER2 antibody. The anti-
HER2 subdomains antibodies were not capable of reacting with the native or eukaryotic 
recombinant fECD protein in ELISA and flow cytometry. Nevertheless, all HER2 
subdomain- and fECD-induced antibodies reacted with the eukaryotic fECD protein 
under both reduced and non-reduced conditions by immunoblotting. The reactivity with 
non-reduced protein was weak, particularly for the subdomain IV–specific antibody. 
These observations could be interpreted based on the three-dimensional structure of 
fECD HER2 protein which seems to be either lost or largely modified in the prokaryotic 
extracellular subdomains (26,27). Accordingly, these HER2 subdomains induce 
antibodies which do not react with native HER2 protein. Further corroborating our 
findings are the absence of post translational modifications in prokaryotic subdomains 
and/or partial denaturation of these proteins during solubilization and purification with 
8M urea or the distortion of the native conformation of the isolated subdomains, and the 
reactivity of these antibodies with eukaryotic fECD HER2 under both reduced and non-
reduced conditions. Boiling fECD protein in SDS entails its partial linearization and 
denaturation with subsequent exposure of certain epitopes, accessible to these 
antibodies. Moreover, reactivity with the reduced fECD protein was better than the non-
reduced preparation. In line with our findings, Rockberg et al. showed that rabbit 
immunization with four HER2 extracellular (residues 42–186, 236–363, 324–530, 531–
626) recombinant proteins, expressed in prokaryotic host, induced polyclonal antibodies 
which  were not attached to the native HER2 on BT474 cell line by flow cytometry 
(28). In addition, they noted that only rabbit polyclonal antibody raised against residues 
spanning the  DII and DIII subdomains (amino acids 347-492) could recognize HER2 
protein expressed on this cell line and  cancer tissues by flow cytometry and 
immunohistochemistry, respectively (28). The inability of the antibodies (generated 
against prokaryotic HER2 extracellular subdomains) to bind with the native eukaryotic 
HER2 protein could be due to the paucity of post translational modifications and/or 
distortion of the native conformation of HER2 extracellular subdomains. As a matter of 
fact, dissociation of each subdomain impacts their tertiary and quaternary structures 
leading to substantial changes in their conformation. 
HER2 active immunotherapy has been studied using DNA, peptides, whole protein, and 
extracellular and intracellular domains of HER2 in animal models and clinical trials 
(2,18,29,30). For instance, HER2 DNA immunization in combination with anti-HER2 
monoclonal antibody thwarted the tumor growth in a breast cancer mouse model (31). 
In yet another study, HER2 peptide vaccine along with GM-CSF, as an adjuvant, 
retarded tumor growth and tolerance break down in transgenic immunized mice (32). 
Furthermore, vaccination with the fECD of HER2 protein along with anti-HER2 
antibody fused to IL2, IL12 or GM-CSF reduced tumor growth and prolonged the life of 
the immunized mice (2). Desis et al. demonstrated that fECD of HER2 protein together 
with GM-CSF as an adjuvant, with no further toxic responses, induced specific T-cell 
responses in patients with breast and ovarian cancers (18). In another clinical trial 
conducted on breast cancer patients (stage II and III), active immunotherapy using 
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incomplete forms of intracellular and extracellular domains of HER2 led to tumor 
regression in a number of patients (19).  
We have recently studied these subdomains following DNA immunization. Last but not 
least, specific antibody responses were triggered when DNA primed mice were boosted 
with recombinant HER2 subdomain proteins (20). 
It was demonstrated that the recombinant prokaryotic subdomain proteins are 
immunogenic, yet the induced antibodies do not bind with the native HER2 molecule 
due to protein denaturation, lack of post-translation modifications and/or loss of native 
conformation of the isolated subdomains. Since these alterations do not substantially 
affect antigen presentation and T lymphocyte stimulation, these subdomains might be 
effective in activating cell mediated immunity and immunoperotection against tumor. 
We are currently investigating these aspects along with analyzing the production of 
eukaryotic HER2 subdomains. 
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