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ABSTRACT 
 
Natural killer (NK) cells are a subset of lymphocytes which play a crucial role in early 
innate immune response against infection and tumor transformation. Furthermore, they 
secrete interferon-γ (IFN-γ) and tumor necrosis factor (TNF) prompting adaptive immu-
nity. NK cells distinguish the unhealthy cells from the healthy ones through an array of 
cell-surface receptors. Human NK cells use inhibitory and activating killer cell Ig-like 
receptors (KIR) as primary probe to discriminate between healthy and unhealthy cells. 
The inhibitory KIRs recognize HLA class I molecules and trigger signals that stop NK 
killing. The activating KIRs are believed to recognize the determinants associated with 
infections and tumors, and trigger signals that activate NK killing. Therefore, the effec-
tor function of a given NK cell depends upon the receptors that it expresses and ligands 
that it recognizes on the targets. Genes encoding KIRs and HLA ligands are located on 
different chromosomes, and vary in number and type. The independent segregation of 
KIR and HLA genes results in variable KIR-HLA combinations in individuals, which 
may determine the individual’s immunity and susceptibility to disease. 
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KIR receptors 
 

NATURAL KILLER (NK) CELLS 
 
NK cells were initially defined as large granular lymphocytes that kill tumor cells with-
out prior sensitization (1). Using the nonadaptive and non-MHC restricted cell-mediated 
“natural” cytotoxicity, the NK cells mediate first-line of defense against invading 
pathogens and tumor growth (2- 4). Currently, the NK cells are defined as the CD3-

CD56+ subset of lymphocytes, and they comprise approximately 10 to 20% of the 
mononuclear cell fraction in normal peripheral blood. NK cells share several common 
features with CD8+ cytotoxic T lymphocytes (CTL) in their development, morphology, 
cell-surface phenotypes, killing mechanism (i.e., using perforin and granzymes), and 
cytokine production such as interferon-γ (IFN-γ) and tumor necrosis factor (TNF) (5, 6). 
Despite several similarities, NK cells and CTLs differ in timing and stamina of the im-
mune response: the NK cells act within hours of infection but lack endurance, whereas 
the CTLs need several days to arise but sustain for life. Another important distinction is 
that the NK cells are unable to produce IL-2. Furthermore, the CTLs and NK cells differ 
in receptors used to sense the unhealthy target cells. The CTLs use clonally restricted T 
cell receptors (TCR), which are generated by gene rearrangement. The TCR recognizes 
the foreign peptides loaded in the context of self-HLA class I molecules, and triggers 
positive signals that activate T cells against the affected unhealthy cells. Contrarily, the 
NK cells use a variety of germline-encoded non-arranging receptors with either inhibi-
tory or activating functions (7- 10). The inhibitory receptors recognize self-HLA class I 
molecules while the activating receptors recognize the non-self molecules associated 
with infection and tumor transformation. The net signal integrated from the inhibitory 
and activating receptors determines the effector function of NK cells (7). Several dis-
tinct gene families encode inhibitory and activating receptors for NK cells (11, 12). This 
review focuses on killer cell immunoglobulin-like receptors (KIR), a family of poly-
morphic key receptors that regulate human NK cell function in distinguishing unhealthy 
targets from the healthy-self (12- 16). 
 
 
KILLER CELL IMMUNOGLOBULIN-LIKE RECEPTORS (KIR) 
 
Fourteen distinct KIR receptors have been identified in humans (Figure 1). They com-
prised of either two or three extracellular immunoglobulin-like domains that form 
ligand-binding segments and either a long or short cytoplasmic tail involved in signal 
transduction. The names given to the KIR genes are based on the structures of the 
molecules they encode (17). The first digit following the KIR acronym corresponds to 
the number of Ig-like domains in the molecule and the 'D' denotes 'domain'. The D is 
followed by either an 'L' indicating a 'Long' cytoplasmic tail, an 'S' indicating a 'Short' 
cytoplasmic tail or a 'P' for pseudogenes. The final digit indicates the number of the 
gene encoding a protein with this structure. Thus KIR2DL1, KIR2DL2 and KIR2DL3 
all encode receptors having two extracellular Ig-like domains and a long cytoplasmic 
tail. The long-tails include one or two immune-receptor tyrosine-based inhibitory motifs 
(ITIM), which trigger inhibitory signals. The short tails do not carry any signaling mo-
tifs. The receptors with a short tail carry a charged amino acid residue in their trans-
membrane region, which allow these receptors to bind to the adopter molecules like 
DAP10 and DAP12 (18). These adopter chains contain immune-receptor tyrosine-based 
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activation motifs (ITAM), which trigger activating signals upon binding of the short-tailed 
KIR receptor to a relevant ligand. 
 

 

 
 
Figure 1. Killer cell Immunoglobulin-like Receptors (KIR). Fourteen distinct KIR receptors have 
been characterized in humans that comprise either 2 or 3 (2D or 3D) extracellular Ig-like do-
mains and either a long (L) or short (S) cytoplasmic tail. Six KIR receptors are activating types 
and the remaining KIR are inhibitory types. The ITIM motifs in the cytoplasmic tails of iKIRs are 
shown as boxes, and positively charged residues in the transmembrane regions of aKIRs are 
shown as circles. The iKIR receptors bind to distinct HLA class I allotypes and the ligands for 
the aKIR receptors not known. 
 
 
The inhibitory KIRs (iKIR) recognize a distinct motif of polymorphic HLA class I 
molecules and trigger signals that restrain NK cell action (Figure 1). Therefore, by 
expressing HLA-A, B, and C molecules, the healthy cells become resistant to NK 
surveillance. Downregulation of HLA class I expression due to tumor transformation or 
viral infection relieves the inhibitory influence on NK cells, permitting NK cells to lyse 
these unhealthy target cells, a phenomenon first described as the `missing-self’ 
hypothesis (19, 20). The following iKIR-HLA class I interactions have been well 
defined: KIR2DL1 binds to Cw*0201, Cw*0401, Cw*0501, Cw*0601 and Cw*1503 
allotypes having lysine at amino acid position 80 located in the F-pocket of the peptide 
binding groove (HLA-CK80 --- termed the C2 group) (21-23). KIR2DL2 and 2DL3 bind 
the remaining HLA-C allotypes (Cw*0102, Cw*0304, Cw*0702 and Cw*08) with 
asparagine at position 80 (HLA-CN80 -- termed the C1 group). The inhibitory signals 
triggered by the KIR2DL2/3+HLA-C1 interaction is relatively weaker as compared to 
those triggered by the KIR2DL1+HLA-C2 interaction (24). KIR3DL1 binds to Bw4, a 
serologically defined public epitope (residues 77-83 on α1 domain) that presents on 
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40% of the HLA-B allotypes and certain HLA-A allotypes (HLA-A23, 24, 25 and 32) 
(25- 27). KIR3DL2 recognizes HLA-A3 and A11 allotypes (28, 29). The strength of 
these specific iKIR-HLA class I interactions are highly sensitive to the HLA class I 
bound peptide sequence (24, 27, 30- 34). The KIR2DL4 receptor binds to the 
trophoblast-specific non-classical class I molecule HLA-G and induces rapid IFN-γ 
production that promotes vascularization of the maternal decidua during early 
pregnancy (35- 38). In addition to its activation function, the KIR2DL4 receptor carries 
a single ITIM motif in its cytoplasmic tail and exhibits inhibitory function (39- 41). 
Although the cell-surface expression of two other inhibitory receptors KIR3DL3 and 
2DL5 was recently confirmed (42, 43), the ligands for these receptors have yet to be 
discovered. 
The ligands for the activating KIRs (aKIR) are unknown or uncertain. Certain aKIRs are 
predicted to bind to the same HLA class I ligands as their structurally related iKIRs. For 
instance, 3DS1 that shares the highest sequence homologies with 3DL1 in their 
extracellular Ig-domain is believed to bind to HLA-Bw4 (44). Similarly, 2DS1 
(homologue of 2DL1) and 2DS2 (homologue of 2DL2) are considered to bind to HLA-
C2 and HLA-C1 allotypes, respectively. Consistent with these predictions, soluble 
KIR2DS1-Fc was shown to bind weakly to HLA-C2 (45). Furthermore, tetramer-based 
cellular assays and direct affinity measurements revealed that the strength of this 
interaction is sensitive to the bound peptide sequence (46). Taken as a whole, the KIR-
HLA interaction depends on polymorphism of KIR and HLA genes as well as the HLA-
bound peptides. 
 
 
NK CELLS EXPRESS A VARIABLE KIR RECEPTOR REPERTOIRE 
 
The number and type of KIR receptors are substantially variable between individuals. 
The NK cells within a given individual can express variable number and type of KIR 
receptors. The genetic and transcriptional factors contributing to the KIR receptor reper-
toire diversity are discussed here: 
1. Variable Gene Content of KIR Haplotypes. The KIR genes are located in the leu-
kocyte receptor complex (LRC) that spans a region of about 150 kb on chromosome 
19q13.4 (47- 49). The number and type of KIR genes arranged on the haplotypes differ 
substantially, a property previously described for HLA-DRB haplotypes (Figure 2). The 
most frequently occurring KIR haplotype in humans is relatively simple, and carries a 
fixed number of 9 genes (6 iKIR genes, 1 aKIR gene and 2 pseudogenes). This haplo-
type is commonly referred to as the group-A KIR haplotype (50). The other KIR haplo-
types comprise more than one aKIR gene and are referred as group-B haplotypes (51, 52). 
The gene content of group-B haplotypes varies dramatically by haplotype (51, 52). Even 
more complicated haplotypes have been identified with two copies of a gene on the 
same haplotype (53- 56). Only three KIR genes (KIR2DL4, 3DL2 and 3DL3) are pre-
sent invariably on all KIR haplotypes and they are referred to as `frame-work´ genes 
(48). Segregation of different group-A and group-B haplotypes generates human diver-
sity in the numbers and types of KIR genes they inherit (genotypes). For example, ho-
mozygotes for group-A haplotypes have only seven functional KIR genes, whereas het-
erozygotes for group-A and group-B haplotypes may have all 14 functional KIR genes. 
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Figure 2. KIR haplotypes have variable gene content. Map of KIR haplotypes as determined 
by family segregation analyses (51, 52, 58, 73, 78). Haplotype 1 represents group-A KIR hap-
lotype and the remainder group-B haplotypes. The ethnic populations in which each haplotype 
was characterized are indicated as C, J and K representing Caucasian, Japanese, and Ko-
rean, respectively. Maps are not drawn to scale. 
 
 
Genotyping studies revealed a significant ethnic difference in the distribution of KIR 
genotypes (Figure 3) (57- 73). Over 50% of Caucasians are homozygous for group-A 
haplotypes (Figure 3, genotype#1), which comprise just one activating KIR2DS4 gene 
(11, 50, 52, 57, 61, 63). In contrast, the populations of the Indian subcontinent and 
Australian aborigines carry a dominant group-B KIR haplotypes (60, 67, 68). NK cells 
of group-B haplotypic individuals express more activating NK receptors and respond 
more vigorously to pathogens. It is likely that group-B haplotypes were positively 
selected by nature over time in certain Asian populations to survive in pathogen rich 
environment. 
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igure 4. Allelic polymorphism of KIR genes. The number of sequences identified for each KIR 
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frequency of each genotype is expressed as a percentage and defined as the number of indi-
viduals having the genotype divided by the number of individuals studied in the population 
group. The data was extracted from the following studies: Caucasian (61, 63, 64, 66), African 
(64, 67), Chinese Han (59), Korean (58), Japanese (160), Vietnamese (60), Thai (61), Asian 
Indians (64, 67, 68), and Australian Aborigines (60). 
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KIR gene exhibits considerable allelic diversity (17, 72, 74- 76). The highest allelic 
polymorphism was observed with 3DL1 comprising over 40 variants (Figure 4). The 
framework genes 2DL4, 3DL2 and 3DL3 comprise over 20 alleles each. Other KIR genes 
are relatively conserved. The amino acid substitutions that distinguish allelic diversity of 
3DL1 is shown to be rich in the region the receptor contacts the polymorphic HLA-Bw4 
ligands (77). The sequence polymorphism of KIR3DL1 is shown to influence their ex-
pression, ligand binding and cytolytic and cytokine secretion functions (24, 77- 81). Some 
nucleotide mutations affect the cell-surface expression of KIR receptors. For example, 
chain-terminating frame-shift deletions were reported for KIR2DS4 (51, 82) and 
2DL4 (83- 85). Similarly, sequence variation in the promoter region is associated with 
the lack of 2DL5 expression (86) and amino acid polymorphism is largely responsible 
for the intracellular retention of 3DL1*004 (87) and 2DL2*004 (79). The synergistic 
combination of allelic polymorphism and variable gene content individualize KIR 
genotypes to an extent where unrelated individuals almost always have different KIR 
types (74). This level of diversity likely reflects a strong pressure from pathogens on 
the human NK cell response. 
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. Transcriptional Variation of KIR Genes. The level of mRNA expression varies 

KIR Cell Surface Expression. KIR receptors are clonally 

y 

IR GENES ARE RECENTLY ORIGINATED AND RAPIDLY EVOLVING 

hree distinct families of MHC class I specific receptors that could control NK function 

3
between KIR genes. For example, the KIR3DL3 transcripts are detected at low levels in 
peripheral blood as compared to other KIR genes (14). The current hypotheses 
explaining variegated expression of KIR genes are based on the methylation state of 
active versus silent KIR alleles (88- 90). Further, alternatively spliced mRNA are 
reported for most KIR genes, and such isoforms can affect the cell surface expression 
and ligand binding (91). 
4. Clonal Diversity of 
expressed. NK cells within an individual can express different number and 
combinations of KIR receptors. The majority of NK cells in peripheral blood express at 
least one inhibitory receptor for self-MHC class I and is functionally competent to 
recognize and eliminate target cells that have down-regulated the respective MHC class 
I ligands (10, 92). Additionally, a subpopulation of developmentally immature NK cells 
exists that lacks inhibitory receptors for self-MHC class I and is generally 
hyporesponsive to target cells that are deficient in MHC class I expression (93- 95). In 
this regard, it was recently shown that the acquisition of functional competence, a 
process called "licensing," is mediated through interaction of inhibitory NK cell 
receptors with cognate class I ligands (94, 96, 97). Therefore, it appears that a minimum 
of one iKIR-HLA interaction is crucial for the development of functional NK cells. 
Consistent with this, the NK cells from MHC-deficient mice and humans were shown to 
be defective in target killing (98, 99). The NK cell receptor repertoire is very different 
from those expressed on T cells. The T cells express only the activating type of TCR 
that is specific to just a single HLA molecule and bound peptide. On the other hand, the 
NK cells express multiple inhibitory and activating KIR receptors for different ligand 
specificities, and their action depends upon the balance between these distinct signals. 
Two subsets of NK cells in peripheral blood have been recognized (100). The majorit
belong to the CD56dim subset, which expresses moderate levels of CD56 and high levels 
of CD16. The CD56dim NK cells usually express KIR and are heterogeneous with 
respect to the expression of killer cell lectin-like receptors (KLR). The minor subset of 
NK cells are the CD56bright phenotype that accounts for only 10% of circulating NK 
cells. These cells express high levels of CD56 and KLR, and tend to lack expression of 
CD16 and KIRs. The two subsets of NK cells differ also in terms of chemokine receptor 
and adhesion molecule expression, suggesting that they have different homing 
properties (101). Indeed, the CD56bright cells have been found to be the dominant NK 
cell subset in human lymph nodes (102). Furthermore, they show important functional 
differences; the CD56dim subset has superior cytotoxic capacity, whereas the CD56bright 
subset has greater ability to produce proinflammatory cytokines on exposure to low 
concentrations of monokines (103). Recently, a great expansion of the CD56bright subset 
of NK cells was demonstrated in synovial fluid of patients with inflammatory arthritis 
(104). These NK cells, a subset of the innate immune system, are therefore well 
positioned to engage in positive feedback within the cytokine networks and to 
contribute to the persistence of inflammation in autoimmune joint disease. 
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(105) (Figure 5). Only the CD94:NKG2 family is used by both human and mouse NK 
cells, and these genes are highly conserved between these two species showing 60-80% 
nucleotide homologies (106, 107). Genes encoding Ly49 and CD94:NKG2 receptors 
belong to the NK gene complex (NKC) located on chromosome 12 in humans and 
chromosome 6 in mouse (108). Ly49 are the key mouse NK cell receptors encoded by 
15-20 polymorphic genes (109). In humans, the Ly49 family has been reduced to a single 
unexpressed pseudogene (110, 111). On the other hand, humans use KIR receptors as major 
class I specific NK cell receptors. In mice, only two KIR-like genes have been identified on 
the X-chromosome (112). However, the expression and NK cell function of these mouse 
molecules are not defined. This species comparison suggests that the KIR system originated 
recently after the divergence of human and mouse lineages, which occurred around 65 mil-
lion years ago (113). 
 

 

igure 5. Human and mouse NK cells use distinct families of MHC class I-specific receptors. 
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humans. The humans use KIR receptors as major class I specific NK cell receptors, which is 
under developed in the mouse. 
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Further, the MHC class I genes in these apes are the direct counterparts (orthologs) to 
human HLA-A, B and C genes. However, only three KIR genes are conserved among 
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humans, chimpanzees and gorillas (116- 118). Most chimpanzee and gorilla KIR genes 
have diverged to the point where the orthologous relationships with human KIRs are 
lost. These findings suggest that the KIR genes are a rapidly evolving system, and the 
driving force of this dynamic evolution is not restricted to the polymorphic MHC class I 
genes. The nature of rapid evolution could potentially contribute to KIR diversity within 
and between species. 
 
 

 

IR RECEPTORS CAN CONTROL T CELL FUNCTION 

 addition to NK cells, KIR receptors are expressed on a subset of CD8+ T cells with 

UMAN LEUKOCYTE ANTIGENS (HLA) 

he HLA proteins are encoded by a fascinating genetic region located in the major 

K
 
In
a memory phenotype indicating that the KIRs can regulate the antigen-specific T cell 
immune response, affirming their role in adaptive immunity (119- 121). Similar to NK 
cells, HLA class I-specific inhibitory receptors might subserve on T cells an important 
negative control that participates in the prevention of autologous damage. Further-
more, recognition of HLA class I molecules by iKIR receptors on T cells down-
regulate the activation-induced cell death, and promotes the survival of CD8+ memory 
T cells (122). The majority of CD4 T cells constitutively expresses the CD28 mole-
cule, a key player in providing co-stimulatory signals to induce T cell activation and 
to prevent T cell apoptosis (123). CD4 T cells lacking the CD28 molecule are dis-
tinctly infrequent in most normal individuals (comprising 0.1–2.5% of T cells) (124). 
However, CD4+CD28null cells are expanded in RA patients expressing variable KIR 
receptors (125). Particularly, a preponderance of aKIR receptors on CD4+CD28null T 
cells and their co-stimulatory function on these CD28 negative T cells prompted the 
hypothesis that the aKIR receptors may predispose a person to autoimmune manifesta-
tion (126- 128). 
 
 
H
 
T
histocompatibility complex (MHC) (129). The human MHC comprises about 3.6 Mb 
DNA located on the short arm of chromosome 6 (6p21.3). The MHC is the most gene-
dense region of the human genome containing 224 identified loci (130). Nearly 40% 
of the expressed MHC genes in humans have immune-related function. The HLA 
genes in the human MHC encodes cell-surface glycoproteins displaying a remarkable 
degree of polymorphism (131, 132). The differences among HLA proteins are local-
ized primarily to the amino terminal region of these molecules, which bind peptides 
and interact with T-cell receptors or KIR receptor molecules. The extensive allelic di-
versity at these loci is generated by point mutations, recombinations, and gene conver-
sions. Rapidly evolving viruses and pathogens drive HLA polymorphism, and conse-
quently the presence of iKIR-binding HLA motifs (A3/11, Bw4, C1 and C2) are vari-
able in individuals (132- 134). 
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UMAN DIVERSITY IN KIR-HLA COMPOUND GENOTYPES 

iven that KIR genes at chromosome 19q13.4 and HLA genes at chromosome 

y of NK cells ex-

ll surface expression and ligands for the aKIR receptors have not been 

H
 
G
6p21.3 are polymorphic and display significant variations, the independent 
segregation of these unlinked gene families produce diversity in the number and 
type of KIR-HLA pairs inherited in individuals (65). Individuals carrying 
homozygous group-A KIR genotypes (AA genotypes) are frequent (30-58%) in most 
ethnic populations (Figure 3, Genotype#1). The exceptions are the Asian Indians and 
Australian aboriginals, in which the individuals carrying AB and BB genotypes are 
frequent. The NK cells from the AA homozygous individuals can express a 
maximum of four iKIR receptors (2DL1, 2DL3, 3DL1 and 3DL2) and one activating 
KIR2DS4 receptor (Figure 6). In contrast, the individuals carrying AB or BB KIR 
genotypes can express a maximum of five iKIR receptors (2DL1, 2DL2/3, 2DL5, 
3DL1, and 3DL2) and 2 to 6 aKIR receptors. The function of the iKIR receptors 
depends on the availability of their specific cognate HLA class I ligands. Only a few 
individuals carry cognate HLA class I ligands for all iKIR receptors, but most 
individuals carry ligands for 2 to 3 iKIR receptors (65). Around 20% of the 
population carries a single iKIR-HLA pair (Figure 6, KIR-HLA compound 
genotypes 1 & 3). Since the KIR receptors are clonally expressed on NK cells in a 
stochastic manner such that each NK cell clone expresses only a portion of the genes 
within the gene profile, a substantial fraction of circulating NK cells of individuals 
with a single iKIR-HLA pair may not express iKIR to the self-HLA class I 
molecules (10, 92), and the NK cells lacking the iKIR expression may trigger 
autoreactivity on stressed-self tissues with further development of a systemic 
autoimmune condition. Furthermore, the environmental insults affecting HLA class I 
expression could promote the break down of self-tolerance and trigger autoimmunity 
in individuals carrying just one inhibitory iKIR-HLA combination. 
The presence of the cognate HLA class I ligand increases the frequenc
pressing the specific iKIR receptor (78). Therefore, the majority of the NK cells from an 
individual carrying more than one iKIR-HLA pair is predicted to express multiple iKIR 
receptors that mediate strong inhibition, and consequently less susceptibility to autoim-
munity (Figure 6, KIR-HLA compound genotypes 2 & 4). On the other hand, excessive 
inhibitory signals triggered through multiple iKIR-HLA interactions may have a detri-
mental effect by blocking the effector function of NK cells against pathogens and ma-
lignant tissues. 
Although the ce
defined, a series of genetic epidemiological data have revealed the association of dis-
tinct aKIR in antiviral immunity (44, 135), autoimmune diseases (136- 139) and cancer 
progression (140, 141). In these models, the activation signals were believed to over-
come HLA-dependent inhibition (7). Genotypes encoding a dominant inhibitory KIR 
receptor repertoire (iKIR+HLA>aKIR) are likely protective against autoimmunity but 
susceptible for infection and tumor (Figure 6, KIR-HLA compound genotype 2). Geno-
types encoding a dominant activating KIR receptor repertoire (iKIR+HLA<aKIR) are 
presumably susceptible to autoimmunity but instrumental in antiviral and anti-tumor 
immunity (Figure 6, KIR-HLA compound genotype 3). 
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Figure 6. Model depicting the contribution of KIR-HLA compound genotypes in human dis-
eases. Predominant inhibitory KIR-HLA ligand combinations with fewer aKIR receptors sup-
press the NK and NK-like T cells, and maintain the tolerance to self. In contrast, the predomi-
nant aKIR receptors and fewer inhibitory KIR-HLA ligand combinations may activate the NK and 
NK-like T cells, and breakdown the self-tolerance leading to autoimmunity. 
 
 
KIR-HLA IN HEMATOPOIETIC STEM CELL TRANSPLANTATION (HCT) 
 
Allogeneic (genetically different) HCT is an effective therapy for an increasing number 
of life-threatening hematological, oncological, hereditary and immunological diseases 
(142- 144). During HCT therapy, the entire hematopoietic system of the patient is de-
stroyed using a severe conditioning regimen and reconstituted by the infusion of pluripo-
tent stem cells from a donor (145, 146). HCT is accompanied by reciprocal immunologi-
cal reactions of the graft against its new host and the host against the graft. Immunocom-
petent cells transplanted with the stem cells or arising from them exert Graft-versus-tumor 
effect (GVT), which is a remarkable alloreactivity against host’s tumor. Unfortunately, 
alloreactive donor cells also mediate graft-versus-host disease (GVHD), which lethally 
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attacks the host’s tissues particularly those that have been stressed by the pre-transplant 
conditioning regimen (i.e., skin, liver and intestine). The residual host immunocompetent 
cells that survive the conditioning regimen may mount an immunological attack against the 
graft, leading to graft rejection (host-versus-graft effect, HVG). 
Donor-derived T cells in the stem cell preparations are potential immunocompetent 
cells, which will confront the mismatched HLA molecules of the recipient and react 
vigorously causing GVHD and GVT. Matching of HLA between donor and recipient 
reduces the T cell alloreactions (147- 149). In HLA identical transplantations, such as 
autologous transplantation, transplantation between the genetically identical twins or 
between HLA-identical siblings, the incidence of GVHD as well as GVT is decreased. 
However, less than one third of eligible patients have an HLA-identical sibling donor. 
To overcome this limitation, the transplantation from matched unrelated donors (MUD) 
are performed using international registries of HLA-typed individuals (150, 151). 
Generally, patients undergoing MUD-HCT, compared to those receiving sibling-HCT, 
display a higher incidence of GVHD, suggesting the role of non-T cell-mediated 
mechanism(s) involved in GVHD and GVT (152- 154). Studies with mice suggest the 
role of NK alloreactivity in bone marrow transplant rejection (155- 157). Recent studies 
with HLA-haploidentical transplantation revealed a potential role of NK cells in 
mediating enhanced anti-leukemic effect, decreased GVHD, and survival advantage of 
allogeneic HCT (158, 159). 
Following allogeneic HCT, the recipient reconstitutes NK cells from the donor stem cell 
graft, and thereby the donor NK receptor and recipient HLA class I ligand determines 
the functional ability of the reconstituted NK cells. The central hypothesis is that pa-
tients reconstituted with more inhibitory `receptor-ligand´ combinations develop a lower 
degree of GVHD, and patients reconstituted with more activating receptors show a high 
GVT effect. The donor graft from group-A homozygotes develops NK cells expressing 
four iKIRs and one or no aKIR (Figure 6). The alloreactivity of these donor NK cells 
depends on the recipient’s HLA type. If the recipient expresses most of the HLA class I 
ligands (HLA-C1, C2, Bw4, and A3/11), the donor NK cells are likely inhibited and be-
come tolerant to recipient tissue, so that less or no GVHD will result. In contrast, recipi-
ents lacking these HLA ligands fail to inhibit all donor NK cells and result in NK medi-
ated GVHD. Since the group-A homozygotes express just one or no aKIR, these NK 
cells may poorly recognize tumors, and thus low GVT effect is expected. The grafts 
from AB or BB haplotypic donors develop NK cells expressing more than one aKIR in 
addition to 4 to 6 iKIRs. The iKIRs will recognize relevant HLA ligands on recipient 
tissues and stop NK alloreactivity. The aKIRs will presumably recognize and kill re-
cipient tumors leading to an increased GVT effect. If the recipient does not have ligands 
for all iKIRs, the GVHD effect is increased. In summary, the degree of KIR-HLA inter-
actions may determine the success rate of haematopoietic cell replacement therapy for 
certain leukemias. 
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