
Iran.J.Immunol. VOL.12 NO.1 March 2015																																																																																1	

Induction of T Regulatory Subsets from 
Naïve CD4+ T Cells after Exposure to 

Breast Cancer Adipose Derived Stem Cells 
 

 
Mahboobeh Razmkhah1, Nadieh Abedi1, Ahmad Hosseini1, Mohammad Taghi 
Imani2, Abdol-Rasoul Talei3, Abbas Ghaderi1,4* 
 

1Shiraz Institute for Cancer Research, 2Department of Plastic Surgery, 3Department of Surgery, 
4Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran 

 
 
ABSTRACT 
 
Background: Adipose derived stem cells (ASCs) provoke the accumulation and 
expansion of regulatory T cells, leading to the modulation of immune responses in 
tumor microenvironment. Objective: To assess the effect of tumoral ASCs on the trend 
of regulatory T cells differentiation. Methods: Peripheral blood naïve CD4+ T cells 
were co-cultured with ASCs derived from breast cancer or normal breast tissues. In 
separate cultures peripheral blood naïve CD4+ T cells were exposed to the culture 
supernatants of ASCs. Results: Generation of CD4+CD25+Foxp3+ and CD4+CD25-
Foxp3+ Treg subsets was observed after coculture of naïve CD4+ T cell with either 
ASCs or the related supernatant. The percentage of CD4+CD25+Foxp3+ cells increased 
after exposing naïve CD4+ T cells to both ASCs and their supernatants while 
augmentation of CD4+CD25-Foxp3+ subset mostly depended on the presence of ASCs. 
Similarly, upregulation of FoxP3 molecule was more significant in condition of cell to 
cell contact. IL-4 and IL-10 were up-regulated in the cocultured naïve CD4+ T cells 
after exposure to ASCs/supernatant while IFN-γ was down-regulated in the presence of 
ASCs. Conclusion: Accordingly, ASC may act as one of the major players in tumor site 
with immunomodulatory effects, which may mostly be carried out through direct cell-
cell interaction.  
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INTRODUCTION 
 
Cancer is considered a complex disease with heterogenous multicellular interactions and 
a high mortality rate. The tumor microenvironment consists of various cell types, 
including different kinds of immune cells, pericytes, fibroblasts, mesenchymal stem 
cells (MSCs), endothelial cells, and carcinoma-associated fibroblasts (CAFs) (1). CAFs 
are generally present at the site of inflammation and have the ability to produce 
proteases and mediate the remodeling of the extracellular matrix through which tumor 
cell invasion will be launched in different types of cancers (1,2). CAFs differentiate 
from stromal fibroblast, bone marrow derived MSCs (3) or adipose derived stem cells 
(ASCs) (4). MSCs can protect breast cancer cells from host immune responses by 
inducing regulatory T and tolerogenic dendritic cells and decreasing the activity of 
cytotoxic T and natural killer (NK) cells (5-7). The immune suppressive effects of 
MSCs have been shown in the in vivo models where they prevented tumor cell rejection 
by the immune system, in allogenic mice mediated by regulatory T cells, and promoted 
tumor cell growth (8). Batten et al. proposed that MSCs can produce anti-inflammatory, 
but not proinflammatory, cytokines such as IL-1α, IFN-γ, and TNF-α which inhibit the 
proliferation and responses of primary and activated T cells (9).  
MSCs have strong immunomodulatory effects on the innate and acquired immune 
responses through various mechanisms including direct cell to cell contact and/or the 
production of a number of soluble factors such as indolamine 2,3-dioxygenase (IDO), 
prostaglandin E2 (PGE2), and transforming growth factor-β1 (TGF-β1) (5). MSCs also 
act at early stages of T cell activation by down regulating granzyme B and CD25 
expression (10), or may exert modulatory functions by inducing Notch signaling in T 
lymphocytes (11). Some reports have also demonstrated the ability of MSCs to generate 
regulatory T-cells after activation of T-cells (12). On the other hand, it has been 
implicated that MSCs do not express MHC class II, and costimulatory molecules such 
as CD80, CD86, CD40, and CD40 ligand, which contributes to their 
immunomodulatory functions (13).   
In our previous report (7), we demonstrated that distinct subtypes of Tregs are induced 
from peripheral blood lymphocytes in the presence of the supernatant of breast cancer 
adipose derived stem cells (ASCs), a mesenchymal derived stem cell. Here, we further 
investigate the immunosuppressive effects of human breast cancer ASCs on naïve 
CD4+ T cells compared to ASCs from normal subjects. As the differentiation of CD4+ 
T cells depends on the expression of various receptors, such as toll like receptors 
(TLRs), (14,15), expression of TLR4 was also assessed in naïve CD4+ T cells both 
before and after coculturing with ASCs. In addition, the effects of ASCs on the 
plasticity of naïve CD4+ T cells in a co-culture system were compared to that of ASCs 
supernatant. Results of this study may contribute to a better understanding of the current 
mechanisms of MSC-T cell cross talk in tumor microenvironment.  
 
 
MATERIALS AND METHODS  
 
Isolation and Characterization of Adipose Derived Stem Cells. The adipose tissues 
of fifteen breast cancer patients who had never received any therapeutic interventions, 
such as chemotherapy radiotherapy and surgery and whose diseases were confirmed by 
histological tests, were obtained by a surgeon in Shahid Faghihi Hospital, Shiraz 
University of Medical Sciences (Shiraz, Iran) and referred to the Stem Cell and Cancer 
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Biology laboratory, Shiraz Institute for Cancer Research, Shiraz-Iran. The mean and 
median ages of patients were 49.2 and 49 ± 13, respectively. There were 4 patients with 
pathological stage I, 6 with pathological stage II, and 5 with pathological stage III 
(Table 1). The data of breast cancer ASCs were compared to the ASCs isolated from 5 
normal women, with no evidence of malignancy or autoimmune diseases, undergoing 
cosmetic mammoplasty surgery, from the same region. The mean and median ages of 
normal individuals were 33.1 and 32 ± 6, respectively. All patients and healthy 
individuals filled out an informed consent to take part in this study. 
ASCs were extracted as previously explained (7,16-18). Briefly, fragments of adipose 
tissues were washed with PBS buffer, minced and digested using 0.2% collagenase type 
I (GIBCO, USA), and then the stromal vascular fraction (SVF) was separated using 
Ficoll gradient (Biosera, UK). Afterwards, the separated cells were resuspended in a 
DMEM medium (GIBCO, USA) containing 10% fetal bovine serum (GIBCO, USA) 
and penicillin/streptomycin (Biosera, UK). Adherent cells were harvested at the third 
passage and were subjected to immunophenotyping by flow cytometry (7,16-18). The 
cells were differentiated into adipocytes and used for coculturing experiments.  
ASCs were stained separately with combinations of phycoerythrin (PE)-conjugated 
mouse anti-human CD80, CD86, CD44, CD105, CD90, CD73, CD29, and CD166 and 
also fluorescein isothiocyanate (FITC)-conjugated mouse anti-human CD14, CD34, and 
CD45 (BD Biosciences, USA). Isotype-matched irrelevant monoclonal antibodies (BD-
Pharmingen, USA) were used to rule out the non specific staining of the cells. Flow 
cytometric analysis was performed on a FACS Calibur machine (BD Biosciences, USA) 
and Flow Jo software was used for the graphical presentation of the data. 
Differentiation of ASCs to Adipocytes. To further characterize the isolated ASCs, 
cells were forced to differentiate into chondrocytes (16), osteoblasts (19), and 
adipocytes. For adipogenic differentiation, 1×105 passage 3 ASCs were cultured in 24 
well -culture plates and used for differentiation when cultures were 60-80% confluent. 
ASCs were differentiated into adipocytes using an adipogenesis differentiation kit 
(STEMPRO Chondrogenesis Differentiation Kit, GIBCO, USA) and then stained with 
0.2% Oil Red O (Merck, Germany) within 2-3 weeks.  
Isolation of Naïve CD4+ T Cell by Magnetic Cell Sorter. Peripheral blood was 
obtained from a healthy donor and gently added to the same volume of Ficoll-Paque for 
density gradient separation of PBMCs. Then, isolated PBMCs were cultured for 2 hrs in 
order to exclude monocytes from the mononuclear cells. At the end of the incubation 
time, peripheral blood lymphocytes (PBLs) were collected and employed for isolating 
naïve CD4+ T cells, using a magnetic cell sorter. For magnetic bead purification, a 
naïve CD4+ T cell isolation kit was used according to the manufacturer’s protocol 
(Miltenyi Biotec, Mönchengladbach, Germany). Briefly, all non-naïve CD4+ T cells 
were depleted over a magnetic cell separator (MACS) LD column (Miltenyi Biotech) 
after incubation with a cocktail of biotin conjugated mAbs against CD45RO, CD8, 
CD14, CD15, CD16, CD19, CD25, CD36, CD34, CD56, CD123, TCR-γ/δ, HLA-DR, 
and CD235a. Purity of the cell subset was routinely tested using flowcytometry for the 
expression of CD4 and CD45RA.  
Culture of Naïve CD4+ T Cells with ASCs. Naïve CD4+ T cells were cultured with 
ASCs from healthy individuals or patients at different stages of breast cancer at a ratio 
of 5 to 1, or were cultured with the culture supernatants of ASCs for 5 days. The control 
group consisted of T cells cultured for 5 days in RPMI culture medium (Biosera, UK) 
containing 10% FBS (untreated PBLs) without ASC/supernatant. Both the test and 
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control culture groups were supplemented with 5 ng/ml phytohemagglutinin (PHA) 
(GIBCO, USA). 
Flowcytometric Analysis of T Cells. T cells from different experiments were washed 
with PBS and stained with FITC-conjugated mouse anti-human CD25, APC-conjugated 
mouse anti-human CD127, and Percp-conjugated mouse anti-human CD4. For 
intracellular staining, 400 µl of 1% cell fix was added and incubated for 5 minutes at 
4°C and washed with 1 ml ice cold PBS. 500 µl of 0.2% saponin was added, incubated 
for 10 minutes and centrifuged. Then, cells were stained with 5 µl PE-conjugated mouse 
anti-human Foxp3 (BD Biosciences) antibody. After 30 minutes of incubation on ice, 
the cells were washed twice with PBS. Cells were also stained with isotype-matched 
irrelevant monoclonal antibodies (BD Pharmingen, USA) as the negative controls. 
Approximately 20,000 events were collected and further analyzed with the use of Flow 
Jo software.  
Western Blot. Expression of TLR4 protein was assessed in treated and untreated T 
lymphocytes by western blotting. Proteins were extracted using RIPA buffer, PMSF 
(Fluka, USA), and protease inhibitor Coktail (Sigma, USA). The protein concentration 
was determined through the Bradford method, then 30 µg of protein was run on SDS-
PAGE gel and blotted on PVDF membrane, which was then blocked in 5% non-fat skim 
milk overnight at 4°C. The blots were incubated with mouse anti-TLR4 or mouse anti-
β-actin antibodies (Abcam, Cambridge, MA). Afterwards, the blots were incubated for 2 
hours with horseradish peroxidase-conjugated anti-mouse secondary antibody (Abcam, 
Cambridge, MA). Finally, blots were washed and protein bands were observed via 
enzyme-linked chemiluminescence using the Super Signal West Pico 
chemiluminescence Kit (Pierce). 
Quantitative Real-Time PCR (qRT-PCR). The abundance of IL-0, IL-4, TGF-β, IL-
13, and IFN-γ gene transcripts was determined  by quantitative real-time PCR (qRT-
PCR), using a Bio-Rad system (Chromo 4 Real-time PCR Detector, Bio-Rad, Foster 
City, CA, USA) with SYBR Green PCR Master Mix kit (Applied Biosystems, Foster 
City, CA, USA). Expression of β-actin housekeeping gene was used as a reference for 
the level of target gene expression. Each PCR reaction was performed in a final volume 
of 25 μL and contained 0.5 μg of the cDNA product, 10 pmol of each primer, and 1× 
reaction mixture of SYBR green I. Primers were designed by the primer 3 open source 
software (Sourceforge, USA). Thermal cycling for all the genes was initiated with a 
denaturation step at 95°C for 10 min, followed by 40 cycles (denaturation at 95°C for 
15 s, annealing at 58°C for 30 s, and extension at 60°C for 60 s). The qRT-PCR 
amplification products were analyzed by melting curve analysis. 
Statistical Analysis. The percentage of different T cell subsets and the level of IL-0, IL-
4, TGF-β, IL-13, and IFN-γ gene transcripts in treated CD4+ T cells were compared to 
the corresponding values from the control samples and between different conditions 
using nonparametric Mann-Whitney U test and Kruskal-Wallis H tests, respectively, by 
SPSS software version 15. The relative amounts of gene transcripts were determined 
using the 2−ΔΔCt formula. All graphs were plotted and evaluated by means of Prism 5 
software (Inc; San Diego CA, USA, 2003). P < 0.05 was regarded as significant in all 
statistical analyses. 
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(30). In the case of T cells, shifting from Th1 to Th2 and the generation and 
proliferation of Tregs in the presence of MSCs has been reported (31,32). In pathologic 
situations such as cancer, inducible (i)Tregs are dominant subsets of Tregs, which 
develop in response to distinctive microenvironmental stimuli and regulate various 
immunological responses. Present knowledge about the origin of human iTregs and 
their suppressing mechanisms are limited and the extent to which the local 
microenvironment regulates Treg activity is of considerable prevailing interest (33). In 
this regard, we had previously demonstrated that the supernatant of breast cancer ASCs, 
a kind of MSC, has the ability to induce Treg phenotype from peripheral blood 
lymphocytes (7). 
Despite these reports, the relationship between MSC and naïve CD4+ T cells is not well 
established. Therefore, in the current study, we examined whether the presence of ASCs 
from breast cancer patients and normal subjects affect naïve CD4+ T cells and if there is 
a difference between the impact of direct cell to cell contact and the supernatant of 
ASCs on naïve CD4+ T cells differentiation.  
Based on the results of this study, presence of ASCs or its supernatant, from both 
cancerous and normal individuals, had crucial roles in changing T cell subsets and 
inducing distinct types of Tregs. Accordingly, we observed both 
CD4+CD25+CD127LowFoxp3+ and CD4+CD25-CD127LowFoxp3+ Treg subsets after 
coculturing of naïve CD4+ T cells with either ASCs or the culture supernatant. 
CD4+CD25+CD127LowFoxp3+ phenotype increased after exposure  to both ASCs and 
their culture supernatant, while augmentation of CD4+CD25-Foxp3+ subset seems 
mostly dependant  on the presence of ASCs and cell to cell contact compared to the 
supernatant alone. This result was also observed for the expression of FoxP3 molecule 
which was upregulated in the presence of both ASCs and supernatants but was more 
significant when naïve CD4+ T cells were co-cultured in a cell to cell contact condition. 
Similarly, in a study by Frazier et al. ASCs were demonstrated to stimulate the 
proliferation of naive CD4(+) T cells and to augment the percentage of CD25(+) T cells. 
Induction of functional iTreg with the ability of upregulating FoxP3 and TGF-β 
expression was observed in direct contact with ASCs but under a low O2 condition [34].  
Numerous studies have shown the suppressive effect of CD4+CD25+Foxp3+ subset but 
the significance of CD4+CD25-Foxp3+ T cells, particularly in tumor biogenesis, is 
currently unclear. It was shown that CD25- T cells are a subset of Tregs induced by 
tumor in mice and are characterized with augmented expression of IL-10 and Foxp3 and 
suppressive functions (35). Yang et al. and his colleagues found that a proportion of 
intratumoral CD4+ T cells were CD4+CD25-Foxp3+ Treg with the ability of 
suppressing CD8+ T cell proliferation. They reported that the existence of this subtype 
depends on T cell-B cell contact and expression of CD70 molecule on lymphoma B 
cells was necessary for Foxp3 upregulation in this subset (36). Thus, based on these 
reports and the results of our study, the importance of the existence of ASCs in the 
tumor site and cell to cell communication would be more provoking of the upregulation 
FoxP3 and Treg cells induction, especially CD25- Tregs. As CD70 is also expressed by 
ASCs (37,38), this molecule may also  play key roles in ASCs-T cell communication 
and induction of distinct subtypes of Tregs. However, further studies are undoubtedly 
needed to clarify the exact molecular mechanisms.  
Development, activation, and expansion of different T cell subsets including Tregs may 
be associated with distinct signalling pathways such as TLRs. TLRs are known to be 
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important in determining the differentiation of CD4+ T cells to Th1, Th2, Th17, and 
Treg cells (14,15).  
Herein, assessment of the expression of TLR4 in naïve CD4+ T cells showed a higher 
expression of this receptor after co-culturing with normal and stage II ASCs, while stage 
III ASCs caused a significant reduction in TLR4 expression in T cells. Reynolds et al. 
reported that the TLR4 signaling pathway increased the proliferation and survival of 
naïve T cells. They found that TLR4−/− CD4+ T cells had a remarkable decrease in Th1 
and Th17 cytokines. Thus, based on our results, it seems that stage III ASCs reduce 
proliferation and survival of T cells, and consequently reduced the proinflammatory 
responses in tumor microenvironment.  
We have demonstrated that the pattern of the cytokine profile of T cells was modified 
after exposing naïve CD4+ T cells to ASCs/supernatant. Among the anti-inflammatory 
cytokines studied, IL-4, IL-10, TGF-β and IL-13, IL-4, and IL-10 upregulated in co-
cultured T cells while TGF-β upregulated only in the presence of stage III ASCs culture 
supernatant. Thus, it is concluded that besides IL-10 producing Tregs (inducible 
(i)Treg), a subset of IL-4 producing Th2 cells may also  be induced in the presence of 
ASCs or ASCs supernatant. Whiteside et al. showed that the plasticity of iTregs, 
expanding in response to cytokines, including TGF-β or IL-10, is controlled by the 
tumor microenvironment. These cells are likely to be responsible for tumor escape as a 
result of the suppression of anti-tumor immune responses (33). As an inflammatory 
cytokine, we assessed IFN-γ and, as expected, downregulation of this cytokine was 
observed in all conditions except in the presence of cancer ASC’s supernatants. Based 
on our results, it seems that the effect of ASCs for decreasing inflammatory cytokines 
mostly depends on the presence of ASCs and cell to cell contact compared to secretory 
factors of the culture supernatant alone. Correspondingly, it has been reported that 
ASCs are proficient to enhance TGF-β but reduce IFN-γ and the Th1 related 
transcription factor, T-bet, in T cells (39). Also, suppression in proliferation of CD4(+) 
and CD8(+) activated T cells, induction of T regulatory cells with 
CD4(+)CD25(+)CTLA-4(+) phenotype, and an increased production of IL-10, PGE2 
and also IFN-γ, under the influence of bone marrow MSCs, has been previously 
reported (40).  
From the data presented here, it can be concluded that ASCs may act as major 
immunomodulatory players in the tumor microenvironment and their activity largely 
depends on direct cell to cell contact. In this scenario, the interactions of ASCs, tumor 
cells and Tregs seem more significant since these players create a vicious triangle 
resulting in tumor cell survival and dissemination. 
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