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ABSTRACT 
 
Background: Falciparum malaria is a severe health burden worldwide. Antigen 
presenting cells are reported to be affected by erythrocytic stage of the parasite. 
Malarial hemozoin (HZ), a metabolite of malaria parasite, has adjuvant properties and 
may play a role in the induction of immune response against the parasite. Objective: 
To determine the immunological impact of hemozoin on the capacity of innate immune 
cells maturation. Methods: Plasmodium falciparum (F32 strain) was cultured in O+ 
blood group up to 18% parasitemia. Natural hemozoin was extracted from infected red 
blood cells. Murine bone marrow derived macrophages and myeloid dendritic cells 
were stimulated with 4 ߤg/mL or 40 ߤg/mL of synthetic hemozoin (β-hematin) or 
natural hemozoin. We assessed the immunomodulatory role of synthetic or natural 
hemozoin in vitro by flowcytometric analysis. Results: The maturation markers MHC-
II, CD80 and CD86 were significantly upregulated (p<0.05) on the surface of murine 
bone marrow derived macrophages or myeloid dendritic cells. Data confirmed the 
potential of macrophages or myeloid dendritic cells, through hemozoin activation, to 
establish an innate immune response against malaria parasites. Conclusion: Both 
synthetic and natural hemozoin are potent inducers of cellular immunity against 
malaria infection. However, natural hemozoin is a stronger inducer as compared to 
synthetic hemozoin.  
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INTRODUCTION 
 
Malaria is a severe health burden worldwide (1,2). Antigen presenting cells (APC) 
orchestrate innate immune response against hemozoin (HZ), a malaria pigment (3). HZ 
based innate immune response is facilitated by distinct subsets of dendritic cells (DC) 
named asplasmacytoid DC (pDC) and myeloid DC (mDC). The pDC secrete type 1 
interferons (IFN) and mDC secrete interleukin (IL)-12 against invading pathogens (4). 
The role of mDC is reported in viral infections, while in malaria infections its role 
needs more investigation. However, it is already established by in vitro experiments 
that mDC are affected by erythrocytic stage of Plasmodium falciparum (P. 
falciparum). This effect is characterized by elevated secretion of IFN-ߙ	(5).  
Being a ligand for Toll-like receptor 9 (TLR9), HZ is reported as a potential adjuvant 
to enhance immune effect (6). The capacity of HZ to initiate an antibody response 
makes it a better option using it as an adjuvant of anti-malarial vaccine candidates (7). 
Functional disability of HZ-filled macrophage is another enigma to undermine 
protective immune response against malaria infection (8). 
Immune response elicited by parasite derived HZ was reported scarcely. However, data 
describing the effect of synthetic HZ on APC have been reported as a debatable 
subject, which need further investigations. Skorokhod described the inhibitory effect of 
HZ on the functional maturity of DC (9,10) while Coban described that HZ upregulates 
the maturation markers on the surface of DC (11). Similar data were reported in murine 
models (12). Although HZ based immune response has been assessed previously, the 
current study was specifically designed to investigate an in vitro effect of parasite 
derived HZ on the maturation of murine bone marrow derived APC. The study would 
help to unravel HZ-based functional dichotomy of APC. 
 
 
MATERIALS AND METHODS  
 
Plasmodium falciparum culture. P. falciparum (F32 strain) was cultured by a candle-
jar method as described previously (13). Parasite culture was performed using malaria 
culture medium (MCM) (10.43 g RPMI 1640 powder medium, 0.5% albumax, 25 mM 
4-(2-hydroxyethyl)-1-piperazine ethane sulfonic acid (HEPES), 7.5% sodium 
bicarbonate (Gibco, Invitrogen, Paisley Scotland), 50 mg/L gentamycin and 200 mM 
hypoxanthine (Sigma, Hamburg, Germany). The study was approved by bio-ethical 
committee (BEC-FBS-QAU-10), Quaid-i-Azam University.  
Synchronization. Ring stage parasites were synchronized with 5% sorbitol (Merck, 
Darmstadt, Germany) treatment as described previously (14).Parasitemia of culture 
was quantified by acridine orange as described previously (15). 
Hemozoin Extraction. Parasite cultures showing over 10% parasitemia and schizont 
stage were harvested and subjected to magnetic separation as described previously 
(16). After three freeze-thaw (െ80°C-water bath at 37°C) cycles, lysate was passed 
through pre-wet (with washing buffer: 2% BSA, 30 min) MACS column (Miltenyi 
Biotec, Gummersbach, Germany). Lysate stayed for 20 min in the MACS column and 
eluted three times with 50 mL washing buffer. Column was dislodged from magnet 
and retained HZ was eluted with 50 mL washing buffer. Elute was stored in weighed 
eppendorf tubes and dried at 37°C for three days. Dried pellet was weighed and 
resuspended in 1 mL sterile distilled water and stored at 4°C.    
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Cell Culture. Bone marrow was extracted from female BALB/c mice (Taconic 
Europe, Denmark) of 8-10 weeks old (n=3/group). Macrophages and mDC were 
generated from bone marrow in 12-well cell culture plates (Corning, NY, USA) as 
described previously (17). Briefly, 1 ൈ105 cells were seeded per well in respective 
media.  For the generation of macrophages, complete DMEM (500 mL, supplemented 
with HEPES 10 mL, sodium pyruvate 5 mL, glutamine 5 mL, PEST 5 mL (Penicillin 
and Streptomycin, 1:1) was supplemented with 10% fetal calf serum (FCS) and 20% 
culture supernatant of L929 (a murine aneuploid fibrosarcoma cell line). The mDC 
were generated in RPMI media, which was supplemented with granulocyte 
macrophage colony stimulating factor (GM-CSF) (4 ng/mL) and IL-4 (4 ng/mL). 
Culture plates were incubated at 37°C and 5% CO2. Media was changed on every third 
day. Confluence was monitored microscopically. Macrophages and mDC were ready 
with in 7 and 10 days of culture, respectively. 
Stimulation. Macrophages or mDC were sub-cultured (5 ൈ  105 cells/well) and 
stimulated with 4 ߤg/mL or 40 ߤg/mL of synthetic HZ (ߚ-hematin) (sHZ) (Sigma-
Aldrich, Steinheim, Netherland) or natural HZ (nHZ). Stimulated culture was 
maintained at 37°C and 5% CO2 for 20 h. 
Immunophenotyping and Flowcytometric Analysis. Stimulated cells (1 ൈ 105 / tube) 
were washed twice with PBS and labelled with fluorescent antibodies against 
maturation markers (MHC-II-PE, CD80-PE, CD86-PE) or identification markers 
(CD11b-FITC and CD11c-APC). Respective isotype controls were also used (BD 
Biosciences, Erembodegem, Belgium). Data were acquired and analysed using 
FACSCalibur (BD, CA, USA) and CellQuestTM Pro (ver. 5.2.1) (BD, CA, USA), 
respectively. Percentage of positive cells and corresponding mean fluorescence 
intensity (MFI) were recorded. 
Statistical Analysis. Data were analysed by GraphPad Prism (v.5). Two-way ANOVA 
test was applied and data were considered significant where p≤0.05. 
 
 
RESULTS 
 
Parasitemia. Over 15% parasitemia was recorded after 6 days of subculture (Figure 
1). Viability was monitored over 98% upto day 6 (data not shown).    
Purification of nHZ. After magnetic purification, a total 41.56 mg nHZ was collected 
from six batches. The nHZ was resuspended as 20 mg/mL and 21.56 mg/mL fractions.  
Immunophenotyping of mDC. Bone marrow derived mDC were characterized as 
CD11b+ and CD11c+cells, which were stimulated with nHZ or sHZ (data not shown). 
A dose dependent maturation was observed in mDC population. Over 50% or 80% 
mDC expressing MHC-II, CD80 and CD86 were observed after stimulation with 
 g/mL nHZ, respectively (Figure 2a). Similar trend of expression levelߤ g/mL or 40ߤ	4
of MHC-II, CD80 and CD86 was observed in sHZ-stimulated mDC. Nevertheless, 
MCH-II molecules were expressed more as compared to CD80 or CD86 molecules on 
the surface of mDC either stimulated with 4	ߤg/mL or 40 ߤg/mL nHZ (Figure 2b). 
Around 1.5-fold increase was determined in mature cells or expression level of 
maturation markers on the surface of mDC when stimulated with higher dose (40 
 .(g/mL nHZߤ 4) g/mL nHZ) as compared with lower doseߤ
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However, percentage of positive macrophages was also increased with stimulation of 
 g/mL of sHZ and a corresponding increase in expression of all maturation markersߤ 40
was also evident (Figure 3c, d).  
 
 
DISCUSSION 
 
It is reported that APCs recognize malaria parasite or its components and deliver innate 
immune response against malaria infection (16). Nevertheless, functional assessment 
of APC after exposure to malaria parasite or its components is an inconclusive area of 
malariology. The present study was designed where APCs (mDC and macrophages) 
were generated from bone marrow of BABL/c mice and subsequently the effect of both 
sHZ and nHz was investigated on mDC and macrophages. The model deemed suitable, 
as it was not reported earlier, to answer the unsettled functionality of APC against P. 
falciparum or its components. 
Previously reported data have shown that malaria parasite infected red blood cells 
(iRBC) or parasite components supress the immune function of DC. Subsequently, 
DCs become unable to bridge the adaptive immune response. Nevertheless, the data 
shown previously are found inconsistent with present findings. Elevated expression of 
MHC-II and co-stimulatory molecules (CD80 and CD86) on the surface of DC 
confirmed the retention of antigen presenting capacity and potential to train naïve T 
cells, respectively. Expression of co-stimulatory molecules on the surface of DC 
indicated its contact dependant potential with iRBC.  
Parasitemia level ensured the contact potential of iRBC with mDC. It ensured the 
downstream protective immune response against malaria parasite. In the current study, 
parasitemia level was corresponding to the number of schizonts (after 
synchronization), which in turn produced large amount of HZ in iRBC. Capacity of HZ 
to modulate immune response might be a better option to understand its synergistic 
effect with potential anti-malarial vaccine candidates.   
The role of HZ as a pathological agent to establish severe malaria, as reported 
elsewhere(18), was ruled out by our findings. Previous reports demonstrate that HZ-
filled macrophages become dysfunctional (8). However, percentages of positive 
macrophages and corresponding expression of maturation markers demonstrated their 
intact function.  
Intensity of innate immune response depends on the type of parasite strain. Different 
malaria parasite strains can opt for a variety of receptors to invade RBC. It corresponds 
to differential immune response (19). F32 parasite strain used in present study might be 
the cause of an elevated immune response in this case. F32 parasite produced large 
quantity of HZ inside food vacuole. Moreover, F32 iRBC might have better contact 
potential with corresponding innate immune cells.  
Number of iRBC is critical to enhance or supress the immune response. Lower doses 
of parasites (i.e. iRBC) enhance the immune response against malaria infection. Higher 
parasitemia conditions supress the downstream immune response (20). Our data 
supported these findings. Maturation of mDC or macrophages by HZ was a result of 
lower parasitemic RBC. As over activation of mDC by TLR renders it dysfunctional. 
In conclusion, current data demonstrated that malaria pigment (HZ) induces the 
maturation of macrophages and mDC. HZ acts as a potent inducer of cellular immune 
response against falciparum malaria. Immunomodulatory function of HZ warrants 
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further investigations in its role as an agent of protective immunity against malaria 
infection.            
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