

International Journal of Nutrition Sciences

Journal Home Page: ijns.sums.ac.ir

SHORT COMMUNICATION

Vitamin D3 and Ferritin Levels in Patients with Hypothyroidism in Baghdad, Iraq

Noor Salih Hallab¹, Zainab Salih Hallab^{1*}, Hiba Salih Hallab²

1. Al-Karkh University of Science, Collage of Science, Iraq
2. Ministry of Health, Abu Ghriab General Hospital, Iraq

ARTICLE INFO

Keywords:

Vitamin D

Ferritin

Hypothyroidism

Iraq

ABSTRACT

Background: Many studies have demonstrated the relationship between vitamin D and ferritin levels and hypothyroidism. The aim of this study was to establish a relationship between vitamin D and ferritin levels and patients with hypothyroidism.

Methods: Forty-eight individuals with hypothyroidism were enrolled and divided into two groups of hypothyroidism patients (n=48) and the control group (n=20); while thyroid hormone, vitamin D and ferritin levels were determined among all participants.

Results: Patients with hypothyroidism showed a significant decline for both ferritin and vitamin D levels in patients with hypothyroidism when compared to the control group.

Conclusion: The low levels of vitamin D and ferritin were associated with hypothyroidism, which emphasize the importance of a decreased vitamin D and ferritin levels.

*Corresponding author:

Zainab Salih Hallab, PhD;
Al-Karkh University of Science,
Collage of Science, Iraq

Email: zainab.hallab@kus.edu.iq

Tel: +9647734267652

Received: October 20, 2025

Revised: January 13, 2026

Accepted: January 23, 2026

Please cite this article as: Hallab NS, Hallab ZS, Hallab HS. Vitamin D3 and Ferritin Levels in Patients with Hypothyroidism in Baghdad, Iraq. Int J Nutr Sci. 2026;11(1):. doi:

Introduction

The thyroid gland plays an important and vital role in regulating metabolism in humans by producing and releasing thyroid hormones such as T3 and T4, which are necessary in various body functions. The part controlling the levels of these hormones is the hypothalamus and the pituitary gland that plays the role of maintaining the balance (1, 2). When there is a decrease in thyroid activity, hypothyroidism may happen and leads to the emergence of symptoms with mild to severe complications (3). A subclinical hypothyroidism exhibits normal T4 level with a slightly higher TSH level, whereas hypothyroidism is clinically characterized by a low T4 level. Iodine insufficiency is the cause of these inadequacies; since it is a major factor in locations where iodine intake is poor (3).

Ingredients of a diet can have a crucial role in cell cycle and proliferation (4-6). Regarding vitamin D, it is a critical element for the immunological system and bone health and has a significant impact on thyroid function. Its conversion into active hormonal forms by the liver and kidneys validates the necessity for assessing the level of vitamin D in patients with thyroid problems (7). Evaluating the level of iron stores in people who suffer from hypothyroidism is also important as they have a significant impact on thyroid function, the response to autoimmunity, iodine deficiency, and insufficient levels of vitamin D, which can play a major role in the development of thyroid disorders (1). Several studies demonstrated that iodine, zinc, iron, selenium, and vitamin D are essential in the synthesis and manufacture of hormones. A lack of iron stores was shown to have a

close relationship with hypothyroidism, which leads to microcytic anemia due to absorption problems (8-11). There is also a study that confirms the role of vitamin D and its relationship to iron deficiency. In cases of Hashimoto's thyroiditis and Graves' disease, measuring the level of these nutrients can determine the deficiencies affecting the thyroid gland (2, 12).

Hypothyroidism is a widespread endocrine disorder that affects a large portion of people, especially females. Its prevalence rate varies from one region to another, and in Saudi Arabia was reported with a rate of 47.34%. It can lead to various functional disorders such as low bone density, anemia, reproductive problems, and cardiovascular diseases. A significant negative relationship was shown between levels of iron and vitamin D in people who suffer from hypothyroidism (13). A study conducted in Abu Dhabi revealed that levels of vitamin D and iron decreased significantly in people with hypothyroidism, and this decrease was associated with an increased level of the thyroid stimulating hormone (TSH). This study has also shown that a large percentage of patients with hypothyroidism suffered from a simultaneous deficiency in both iron and vitamin D (12). So the importance of monitoring the levels of iron and vitamin D can prevent osteoporosis and anemia too (12, 13). The aim of this study was to determine vitamin D3 and ferritin levels in patients with hypothyroidism in al-karkh, Iraq.

Materials and Methods

Forty-eight patients suffering from hypothyroidism who were admitted to Ghazi Hariri Hospital and Yarmouk Teaching Hospital in Baghdad, Iraq were enrolled. Patients were diagnosed according to clinical examination by skilled doctors, while the thyroid hormones, namely T3, T4 and TSH, were measured, as well as iron and vitamin D levels. Participants were divided into two groups of hypothyroidism patients (n=48) and the control group (n=20) who did not have thyroid problems. Among both groups, 5 mL of blood was taken, the serum was separated by a centrifuge at 3000 rpm for 10 minutes and was stored until use to determine the levels of T3, T4 and TSH hormones and iron

and vitamin D levels (Cobas-E411/Roche device) as described before (14). SPSS software (Version 20, Chicago, IL, USA) was utilized to compare groups employing statistical tests. A *p* value less than 0.05 was considered statistically significant.

Results

Table 1 illustrates the levels of thyroid hormones, vitamin D and ferritin levels in patients suffering from hypothyroidism revealing a reduction in the levels of vitamin D and Ferritin in hypothyroidism patients.

Discussion

Understanding the relationship between thyroid hormones and vitamin D and iron levels in patients with hypothyroidism is important in order to devise mechanisms to control the complications associated with hypothyroidism. A study conducted by Al-Rawi *et al.* revealed that individuals with vitamin D3 deficiency had higher levels of insulin resistance, which showed an association of antibiotics and thyroid gland activity (15). The relationship between the levels of iron and vitamin D and hypothyroidism and iodine deficiency was demonstrated in hypothyroidism patients (16). The interaction between iron and vitamin D levels and hypothyroidism has also been highlighted in Chaudhary *et al.*'s study (17). Another study illustrated that patients with iodine deficiency had low levels of ferritin, indicating an iron anemia in patients with hypothyroidism (18). A strong correlation between vitamin D deficiency and hypothyroidism has been described by D'Aurizio *et al.*'s too (19). This is consistent with the results of our research. In addition, Caturegli *et al.* reported serum ferritin level to be negatively associated with perfluorooctane acid level, which confirms a possible correlation between iron deficiency and hypothyroidism (20).

The relationship between vitamin D and hypothyroidism and an increase in autoimmune diseases was found as in thyroid deficiency a rise in anti-peroxides and anti-thyroglobulin antibodies happens (21-23). In our study, vitamin D level showed a decline in patients suffering from

Table 1: illustrate the levels of various hormones, Vitamin D and ferritin in patients suffering from hypothyroidism.

Variable	Control group Mean±SE	Hypothyroidism group Mean±SE	<i>P</i> value	Significant (<i>p</i> ≤0.05 or <i>p</i> ≤0.01)
TSH (miU/dL)	1.265±0.150	9.038±2.277	0.0021	S**
T3 (ng/dL)	1.786±0.094	0.934±0.080	0.0001	S**
T4 (nmol/L)	125.598±4.079	62.761±4.306	0.0001	S**
D3 (ng/dL)	36.219±1.606	17.841±1.711	0.0001	S**
Ferritin (ng/dL)	21.605±1.077	8.093±0.687	0.0001	S**

hypothyroidism when compared to the control group explaining the correlation of vitamin D level with hypothyroidism. It was shown that the use of vitamin D supplements could lower the level of TSH but not as a major triad to affect the levels of T3 and T4 hormones (23). Other studies have also demonstrated that the use of vitamin D supplements for people with hypothyroidism has played an important role in improving the thyroid function, and regulating antibodies and autoimmune diseases that could negatively impact thyroid function (24). It was illustrated that autoimmune diseases can participate in destruction of thyroid activity and have a harmful effect on vitamin D level and thus increase the risk of thyroid cancers (25).

Conclusion

In short, it is important to assess levels of iron and vitamin D among individuals with hypothyroidism. A very close relationship between iron and vitamin D levels and thyroid hormones was demonstrated in our study. It is important to conduct other studies with a larger sample size and include other factors, such as sex, age, and region to explore the association between iron and vitamin D levels and hypothyroidism.

Acknowledgement

The authors thank their institutions for academic support.

Funding

This study received no specific funding.

Authors' Contribution

All authors contributed equally to this work.

Conflict of Interest

The authors declare no conflict of interest.

References

- Babić Leko M, Jureško I, Rožić I, et al. Vitamin D and the thyroid: A critical review of the current evidence. *Int J Mol Sci.* 2023;24:3586. DOI: 10.3390/ijms24043586. PMID: 36835005.
- Kumar J, Kondaveeti D, Rayana S, et al. Vitamin D Deficiency and Hashimoto's Thyroiditis in a Patient with Polycystic Ovary Syndrome and Ulcerative Colitis. *Int J Nutr Sci.* 2025;10:363-366. DOI: 10.30476/ijns.2025.104324.1354.
- Appunni S, Rubens M, Ramamoorthy V, et al. Association between vitamin D deficiency and hypothyroidism: results from the National Health and Nutrition Examination Survey (NHANES) 2007–2012. *BMC Endocr Disord.* 2021;21:224. Doi: 10.1186/s12902-021-00897-1. PMID: 34772378.
- Hedayati A, Homayoun M, Mobaracky A, Mehrabani D, Masoumi SJ. Lithium Chloride, Ketogenic Diet and Stem Cell Transplantation in Treatment of Bipolar Disorder. *Int J Nutr Sci.* 2024;9:80-82. DOI: 10.30476/IJNS.2024.99601.1250.
- Homayoun M, Mehrabani D, Edalatmanesh MA, et al. The Role of Lithium Chloride in Nutrition and Stem Cell Growth Kinetics: A Review. *Int J Nutr Sci.* 2021;6:6-13. DOI: 10.30476/IJNS.2021.88801.1104.
- Mehrabani D, Masoumi SJ, Masoumi AS, et al. Role of Diet in Mesenchymal Stem Cells' Function: A Review. *Int J Nutr Sci.* 2023;8:9-19. DOI: 10.30476/IJNS.2023.97788.1221.
- Zhou X, Li B, Wang C. Study on the changes in TSH, TPO-Ab and other indicators due to Vitamin D deficiency in Pregnant Women with subclinical hypothyroidism in the first trimester. *Pak J Med Sci.* 2020;36:1313-1317. DOI: 10.12669/pjms.36.6.1982. PMID: 32968400.
- Krishnamurthy HK, Reddy S, Jayaraman V, et al. Effect of micronutrients on thyroid parameters. *J Thyroid Res.* 2021;2021:1865483. DOI: 10.1155/2021/1865483. PMID: 35140907.
- Pasalar M, Mehrabani D, Afrasiabi A, Mehravar Z, Reyhani I, Hamidi R, Karimi M. Prevalence of thalassaemia, iron-deficiency anaemia and glucose-6-phosphate dehydrogenase deficiency among arab migrating nomad children, southern Islamic Republic of Iran. *East Mediterr Health J.* 2014;20:726-31. PMID: 25601811.
- Karimi M, Mehrabani D, Pasalar M, et al. Thalassemia, Iron And G6pd Deficiency In Lor Migrating Nomad Children, Southern Iran. *Iran Red Crescent Med J.* 2010;12:441-445.
- Mehrabani D, Karimi M, Pasalar M, et al. Frequency Of Thalassemia, Iron And Glucose-6phosphate Dehydrogenase Deficiency Among Turkish Migrating Nomad Children In Southern Iran. *East Mediterr Health J.* 2014;20:726-31. PMID: 25601811.
- Shimmi SC, Eldosouky HF, Parash MT, et al. Probability of Concurrent Deficiency of Vitamin D and Iron in Hypothyroidism: A Cross-Sectional Study. *Cureus.* 2023;15:e37152. DOI: 10.7759/cureus.37152. PMID: 37153231.
- Thakur C, Saikia TC, Yadav N. Total serum levels of triiodothyronine (T3) thyroxine (T4) and thyrotropin (TSH) in school going children of Dibrugarh district: an endemic goitre region of Assam. *Indian J Physiol Pharmacol.* 1997;41:167-70. PMID: 9142564

14 Tamer F, Yuksel M, Karabag Y. Serum ferritin and vitamin D levels should be evaluated in patients with diffuse hair loss prior to treatment. *Postepy Dermatol Alergol.* 2020;37(3):407-411. DOI: 10.5114/ada.2020.96251. PMID: 32792884

15 El-Rawi HA, Ghanem NS, ElSayed NM, et al. Study of vitamin D level and vitamin D receptor polymorphism in hypothyroid Egyptian patients. *J Thyroid Res.* 2019;2019:3583250. DOI: 10.1155/2019/3583250. PMID: 31534663.

16 Mackawy AMH, Al-Ayed BM, Al-Rashidi BM. Vitamin D deficiency and its association with thyroid disease. *Int J Health Sci (Qassim).* 2013;7:267-75. DOI: 10.12816/0006054. PMID: 24533019

17 Chaudhary S, Dutta D, Kumar M, et al. Vitamin D supplementation reduces thyroid peroxidase antibody levels in patients with autoimmune thyroid disease: An open-labeled randomized controlled trial. *Indian J Endocrinol Metab.* 2016;20:391-8. DOI: 10.4103/2230-8210.179997. PMID: 27186560.

18 Mikulska AA, Karaźniewicz-Łada M, Filipowicz D, et al. Metabolic characteristics of hashimoto's thyroiditis patients and the role of microelements and diet in the disease management—An overview. *Int J Mol Sci.* 2022;23:6580. DOI: 10.3390/ijms23126580. PMID: 35743024.

19 D'Aurizio F, Villalta D, Metus P, et al. Is vitamin D a player or not in the pathophysiology of autoimmune thyroid diseases?. *Autoimmun Rev.* 2015;14:363-9. DOI: 10.1016/j.autrev.2014.10.008. PMID: 25308530.

20 Caturegli P, De Remigis A, Rose NR. Hashimoto thyroiditis: clinical and diagnostic criteria. *Autoimmun Rev.* 2014;13:391-7. DOI: 10.1016/j.autrev.2014.01.007. PMID: 24434360

21 Fröhlich E, Wahl R. Thyroid autoimmunity: role of anti-thyroid antibodies in thyroid and extra-thyroidal diseases. *Front Immunol.* 2017;8:521. DOI: 10.3389/fimmu.2017.00521. PMID: 28536577.

22 Metwalley KA, Farghaly HS, Sherief T, et al. Vitamin D status in children and adolescents with autoimmune thyroiditis. *J Endocrinol Invest.* 2016;39:793-7. DOI: 10.1007/s40618-016-0432-x. PMID: 26809977.

23 Talaei A, Ghorbani F, Asemi Z. The effects of Vitamin D supplementation on thyroid function in hypothyroid patients: A randomized, double-blind, placebo-controlled trial. *Indian J Endocrinol Metab.* 2018;22:584-588. DOI: 10.4103/ijem.IJEM_603_17. PMID: 30294564

24 Chahardoli R, Saboor-Yaraghi AA, Amouzegar A, et al. Can supplementation with vitamin D modify thyroid autoantibodies (Anti-TPO Ab, Anti-Tg Ab) and thyroid profile (T3, T4, TSH) in Hashimoto's thyroiditis? A double blind, Randomized clinical trial. *Horm Metab Res.* 2019;51:296-301. DOI: 10.1055/a-0856-1044. PMID: 31071734

25 Hu MJ, Zhang Q, Liang L, et al. Association between vitamin D deficiency and risk of thyroid cancer: a case-control study and a meta-analysis. *J Endocrinol Invest.* 2018;41:1199-1210. DOI: 10.1007/s40618-018-0853-9. PMID: 29464660.