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ABSTRACT

Background: Breast cancer, the most common cancer among women, necessitates
early detection. Despite advances in Computer-Aided Diagnosis (CAD), lesion detec-
tion in mammograms remains challenging. Artificial Intelligence (AI) in radiology
offers significant potential to enhance diagnostic accuracy in medical imaging.

Objective: This study compares object detection methods to identify the most
effective model for smart diagnostic systems. This comprehensive study is the first
to apply the advanced You Only Look Once version 12 (YOLO-v12) architecture for
the automated detection and localization of lesions in mammographic images and to
identify their malignancy or benignity status with high precision.

Material and Methods: This comparative experimental study, utilizing retro-
spective data, also evaluated two state-of-the-art models, the Detection Transformer
(DETR) and RetinaNet, for their performance. The models were trained and tested on
the publicly available Categorized Digital Database for Low-Energy and Subtracted
Contrast-Enhanced Spectral Mammography (CDD-CESM), which contains 1,982
mammograms with 3,720 annotated lesions of various types and sizes.

Results: YOLO-vI2 demonstrated excellent diagnostic accuracy (mean Aver-
age Precision at an IOU threshold of 0.5 (mAP50)=0.98; Intersection Over Union
(IOU)=0.95), significantly outperforming contemporary models and older YOLO
versions.

Conclusion: The promising and robust results clearly underscore the remarkable
potential of artificial intelligence technologies in effectively assisting radiologists with
the early detection and diagnosis of breast cancer. These findings advocate for the
implementation of YOLO-v12 in clinical mammography screening applications and
suggest that future research should prioritize real-time diagnostic systems to further
enhance breast cancer detection capabilities.
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Introduction

reast cancer stands as the most prevalent malignancy among

women worldwide, presenting significant challenges for global

healthcare systems. According to the American Cancer Society’s
statistics, approximately 290,000 women are diagnosed with this dis-
ease annually, with nearly 44,000 deaths [1]. The disease process begins
with abnormal cellular proliferation within breast tissue, resulting in the
formation of either benign or malignant masses. Malignant tumors pos-
sess the capability to metastasize to other organs throughout the body.
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Early detection of breast cancer plays a cru-
cial role in enhancing survival rates, improv-
ing treatment efficacy, and reducing mortality
rates. Nevertheless, identifying breast lesions
in their initial stages presents considerable dif-
ficulties. These challenges arise from substan-
tial variations in the appearance, dimensions,
and location of lesions, as well as their resem-
blance to normal breast tissue. Such factors
can lead to diagnostic delays or errors, under-
scoring the necessity for developing more pre-
cise and efficient detection methodologies [2].

Mammography is the most reliable and ef-
fective method for screening and identifying
suspicious breast lesions, enabling radiolo-
gists to detect concerning abnormalities, in-
cluding masses, microcalcifications (tiny cal-
cium deposits), and structural changes in the
breast tissue. During this examination, spe-
cialists search for white spots, tissue density
patterns, and alterations in breast shape and
size to differentiate malignant masses (danger-
ous with growth and spreading potential) from
benign ones (non-cancerous and harmless).
Research has demonstrated that regular mam-
mography screening reduces mortality rates
through early tumor detection before spread to
other tissues occurs. Nevertheless, challeng-
es, such as increasing numbers of mammo-
grams requiring evaluation, specialists’ heavy
workloads, visual fatigue, and variations in
image interpretation can negatively impact
diagnostic accuracy [3,4].

In recent years, Al has emerged as a valu-
able ally for physicians, playing a crucial
role in medical image analysis, particularly
mammography. Computer-Aided Diagnostic
(CAD) systems function as secondary con-
sultants, capable of analyzing vast quantities
of mammographic images with remarkable
speed and precision, identifying suspicious le-
sions that warrant further investigation [5-8].
Deep Learning (DL) algorithms have dem-
onstrated the ability to recognize patterns
within images that might elude human detec-
tion. These sophisticated systems can identify

lesions with high accuracy, precisely delineate
their boundaries, and even determine their
classification. Recent research indicates that
such systems can potentially detect cancer
markers approximately six years earlier than
conventional diagnostic methods, highlighting
their vital contribution to improving treatment
outcomes and enhancing patient survival rates
[9,10]. Furthermore, Al has shown tremen-
dous potential in assisting doctors with more
accurate lesion diagnosis, reducing workload
burdens, and eliminating human errors stem-
ming from fatigue or inconsistent interpreta-
tions of imaging data.

The primary challenge in breast cancer de-
tection lies in achieving high accuracy when
identifying lesions, which is complicated by
issues such as false positives (incorrectly diag-
nosing cancer) and false negatives (failing to
detect existing disease). These errors can lead
to patient anxiety, unnecessary treatments, or
delays in initiating proper care. Since accurate
diagnosis depends heavily on radiologists’
skill and experience, and different interpre-
tations of the same image may yield contra-
dictory results, utilizing Al systems, i.e., DL
models, as supportive tools appears essen-
tial [10]. The most advanced DL models for
detecting objects (such as lesions) are called
one-stage detection models. The most widely
used one-stage models include YOLO (You
Only Look Once), RetinaNet, and Detection
Transformer (DETR). These models have
been applied to lesion detection in mammog-
raphy images in previous studies [11-13].

In 2023, Demirel et al. [11] implemented
RetinaNet using a focal loss error function
to identify cancerous masses with an accu-
racy of 0.73, sensitivity of 0.60, and mAP50
of 0.56 on a private dataset. Quifiones-Espin
et al. [12] applied a YOLO-v5x model for
breast mass detection, attaining a sensitiv-
ity of 0.80 and mAP50 of 0.60 on the VinDr-
Mammo and MIAS datasets. Duque et al.
[13] implemented a DETR model for breast
mass detection, attaining an mAP50 of 0.68
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on the INbreast dataset. Nevertheless, this
model exhibited limitations in detecting
small and overlapping masses, particularly in
high-density images, which were attributed
to insufficient training data and inadequate
diversity in training samples. In 2024, Shia
and Ku [14] utilized a YOLO-v8 model to
detect microcalcifications in mammography
images on a private dataset and achieved an
accuracy of 0.86, a sensitivity of 0.83, and
mAP50 of 0.92, representing substantial
improvement over previous research.

In this research, in line with previous work
on detecting cancer in mammography data
[14], we aimed to improve the performance by
applying, for the first time, the latest version
of the YOLO algorithm, i.e., vl12, on mam-
mography data. Two other one-stage models,
including DETR and RetinaNet, were also in-
vestigated. A public dataset, specifically the
Categorized Digital Database for Low Energy
and Subtracted Contrast-Enhanced Spectral
Mammography (CDD-CESM), was utilized
to train and test the models.

Material and Methods

In this comparative experimental study using
retrospective data, three one-stage detection
models: DETR, RetinaNet, and YOLO-v12
(medium variant), were trained and evaluated
on the CDD-CESM dataset. These one-stage
approaches are particularly suitable for real-
time clinical applications due to their excep-
tional speed and accuracy, offering significant
potential for rapid and precise lesion identi-
fication in mammographic imagery. To im-
prove the performance, transfer learning tech-
niques were employed utilizing pre-trained
weights from the Common Objects in Con-
text (COCO) dataset. Key hyperparameters
were meticulously calibrated for each model,
including input image dimensions, padding
techniques, optimization algorithms (such as
Adam, AdamW, and Stochastic Gradient De-
scent (SGD)), and error functions (including
Focal Loss for classification and Smooth L1

for regression).

The lesion identification process across all
examined models comprises three fundamen-
tal automated stages: 1) the extraction of key
features from mammography images using
Convolutional Neural Networks (CNNs) as
the backbone architecture; 2) processing these
features in the neck section to enhance spatial
and semantic information; and 3) employing
the detection head to predict the precise le-
sions’ location (bounding box coordinates)
and classification (benign or malignant). The
following sections examine the CDD-CESM
dataset, the architecture of each model, the
implementation of transfer learning, and the
evaluation metrics.

CDD-CESM dataset

This study utilized the CDD-CESM dataset
comprising mammogram images from 326 fe-
male individuals. Each subject typically had
8 images, including 4 images for each breast
(low-energy and CESM subtraction images
in Cranio-Caudal (CC) and Medio-Lateral
Oblique (MLO) views). From the initial col-
lection of 2006 images, 24 were excluded due
to incorrect information, resulting in a final set
of 1982 images, where 757 images were nor-
mal (without lesions), and the remaining 1225
images contained a total of 1744 malignant
and 1219 benign lesions. The malignant and
benign labels were given to each lesion based
on pathology reports. Out of 326 subjects, 62
individuals had images with no lesions, 115
subjects had images with only benign lesions,
and the remaining 149 subjects had images
with at least one malignant lesion. Figure 1
illustrates the distribution of the dataset [15].

CESM represents an advanced breast imag-
ing technology that demonstrates superior di-
agnostic accuracy compared to conventional
Digital Mammography (DM) and operates
through intravenous administration of non-
ionic iodinated contrast material (adminis-
tered at a dosage of 1.5 milliliters per kilogram
of body weight). This methodology captures
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Figure 1: The dataset distribution

two distinct images for each projection (utiliz-
ing CC and MLO views): one acquired with
low energy (26-31 kV) resembling standard
full-field DM, and another obtained with high
energy (45-49 kV) that exhibits greater sensi-
tivity to the contrast agent. Then, subtraction
of the high-energy images from the low-ener-
gy images eliminates normal breast tissue and
highlights regions with high contrast uptake,
which are typically markers of abnormal vas-
cularization and possible malignancy [15].

DETR

In this study, the DETR model identified le-
sions in mammography images through three
primary stages. Initially, in the backbone sec-
tion, a ResNet-50 CNN extracted feature maps
containing crucial visual information from the
input image. Next, in the neck section, these
feature maps underwent flattening and merged
with positional encoding to preserve spatial
information; subsequently, a Transformer
Encoder with self-attention mechanisms pro-
cessed these features to comprehend relation-
ships between different image regions and
generated context-aware, enriched features.
Finally, in the detection head, the encoder’s
output, alongside a fixed number of object
queries, entered the transformer decoder; the
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decoder refined these queries through self-at-
tention and cross-attention, producing output
vectors that fed into Feed-Forward Networks.
These networks independently predicted le-
sion classification (malignant or benign) and
the corresponding bounding box coordinates.
This process was trained using a Hungar-
ian Matching bipartite loss function to ensure
accurate predictions without overlaps [16].

RetinaNet

The RetinaNet model used in this study com-
prised three principal components. The Back-
bone section employed ResNet-50, resolv-
ing the gradient vanishing problem through
skip connections while extracting multi-level
features from mammography images. In the
neck component, the Feature Pyramid Net-
work intelligently combined low-level fea-
tures (containing precise spatial details) with
high-level features (rich in semantic informa-
tion) via top-down pathways and lateral con-
nections, generating multi-scale feature maps.
The feature maps were passed to the detection
head, comprising two parallel subnetworks:
1) a classification branch predicting lesion
type (benign or malignant) using focal loss,
and 2) a regression branch estimating bound-
ing box coordinates. Finally, Non-Maximum
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Suppression (NMS) eliminated redundant and
overlapping boxes, leading to enhanced de-
tection accuracy. This integrated architecture
maintained an optimal balance between speed
and precision, demonstrating remarkable ca-
pability in detecting lesions of varying dimen-
sions in mammography images [17].

YOLO-v12

The YOLO-v12 model comprised three
principal components that worked in concert
to accurately detect lesions in mammography
images. The backbone section utilized Resid-
ual Efficient Layer Aggregation Networks (R-
ELAN), employing skip connections and 7x7
separable (depth-wise) convolutions to effi-
ciently extract multi-scale features while miti-
gating the gradient vanishing problem. In the
neck section, the Path Aggregation Network
enriched and integrated the extracted features
by establishing bidirectional connections be-
tween various layers: downward pathways
transmitted semantic information while up-
ward pathways conveyed textural details. Ad-
ditionally, the area attention mechanism with
FlashAttention enabled intelligent focus on
critical image areas. Finally, the detection head
received the refined feature maps and simul-
taneously predicted both the precise position
of lesions (boundary boxes) and their classi-
fication (benign or malignant). It then applied
the NMS algorithm to eliminate redundant
boxes, thereby delivering high-precision final
detection results [18-20].

Transfer Learning

Transfer learning represents an efficient
methodology in deep learning, employed in
this research to enhance the performance of
lesion detection models in mammography im-
ages. We utilized pre-trained models on the
COCO dataset, which is a large-scale object
detection dataset, as a starting point, which
we then optimized for lesion detection and
classification on our mammography dataset.
The transfer learning process encompassed

several fundamental stages: initially, we load-
ed the pre-trained model weights and con-
verted the CDD-CESM dataset into a standard
format compatible with the intended model
(for instance, YOLO) to ensure structural
compatibility with the models. Subsequently,
we replaced the final fully connected and clas-
sification layers of the models according to the
number of classes. We then proceeded with
model fine-tuning. Fine-tuning constitutes a
process within transfer learning whereby a
pre-trained model undergoes optimization for
a specific problem. Two principal fine-tuning
methodologies exist: 1) partial fine-tuning,
where only the final layers receive training
and the weights of other layers are frozen, and
2) full fine-tuning, where the entire network
undergoes retraining [21].

In this research, we implemented the lat-
ter approach. Given the adequate volume of
available data (1982 images from 326 indi-
viduals), we retrained the complete network
to optimize the extracted features for breast
lesion detection. The transfer learning ap-
proach not only reduced training time but also
significantly enhanced detection accuracy by
transferring general object recognition knowl-
edge to the specialized domain of breast lesion
identification.

Preprocessing, Dataset Partition-
ing, and Hyperparameter Settings
A stratified 5-fold cross-validation was em-
ployed to ensure balanced class distribution
(normal, malignant, and benign), prevent data
leakage, and enable accurate evaluation. In
each fold, 80% of the images per class were
allocated for training, 10% for validation, and
10% for testing, with final performance met-
rics averaged across all five folds. For data
preprocessing, images underwent normaliza-
tion by subtracting the mean and dividing by
the standard deviation to standardize pixel
values [15]. Hyperparameter settings includ-
ed training for 100 epochs with a batch size
of 16, using the AdamW optimizer with an
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initial learning rate of 0.0001 and a dropout
rate of 0.15 to mitigate overfitting. The experi-
ments were conducted on a hardware platform
equipped with dual NVIDIA T4 GPUs, 15
GB of dedicated GPU memory, and 29 GB of
system RAM.

Performance Metrics

The models’ performances of lesion de-
tection and classification were meticulously
evaluated using standard metrics, including
precision, recall, mean average precision at
an Intersection Over Union (IOU) threshold
of 0.5 (mAP50), IOU, area under the curve of
the receiver operating characteristics (AUC-

ROC), and confusion matrix [22].

Results

Among the three proposed models,
YOLO-v12-m achieved the highest perfor-
mance for both benign and malignant lesion
detection, with mAP50=0.98 and I0U=0.95.
For malignant lesions, it obtained a preci-
sion of 0.92 and a recall of 0.93. RetinaNet
also demonstrated robust detection capability
(mAP50=0.79), whereas DETR exhibited the
lowest overall performance (mAP50=0.65).
Detailed performance metrics for each mod-
el are provided in Table 1, while Table 2
compares the proposed models with results

Table 1: The lesion detection and classification performance metrics for each model with 95%

Confidence Intervals (Cl).

Precision Recall F1- F1-Score
M | | Precisi Recall AP |
ode Class recision _95%_Cl eca _95%_Cl Score _95%_ClI mAP50 IOU
Benign 0.64 [0.53,0.74] 0.66 [0.54,0.76]  0.65 [0.55,0.73]
DETR i 0.65 0.80
Malignant 0.84 [0.77,0.89] 0.73 [0.66,0.79] 0.77 [0.73,0.83]

, Benign 0.88 [0.78,094] 079 [0.69,0.87] 0.83  [0.76,0.90]
RetinaNet - 0.79 0.86
Malignant 0.92 [0.87,096] 080 [0.73,0.85] 0.86  [0.81,0.90]

Benign 0.94 [0.87,098] 093 [0.85,097] 094  [0.89,097]
YOLO-vI2-m 098 095
Malignant ~ 0.92 [0.87,095] 093 [0.88,0.96] 093  [0.90,0.96]

DETR: Detection Transformer, YOLO-v12-m: You Only Look Once-version 12- medium variant, CI: Confidence Intervals,
mAP50: mean Average Precision at an IOU threshold of 0.5, IOU: Intersection Over Union

Table 2: Comparison with previous studies

Method Reference Year Database mAP50 10U
DETR [13] 2024 INbreast 0.68 -
RetinaNet (1] 2023 Private dataset 0.56 -
YOLO-v5 [12] 2023 VinDr-Mammo, MIAS 0.60 -
YOLO-v8 [14] 2024 Private dataset 0.92 -
DETR 0.65 0.80
RetinaNet Current Study 2025 CDD-CESM 0.79 0.86
YOLO-v12-m 0.98 0.95

DETR: Detection Transformer, YOLO-v5: You Only Look Once-version 5, YOLO-v8: You Only Look
Once-version 8, YOLO-v12-m: You Only Look Once-version 12- medium variant, VinDr-Mammo: Viet-
namese Clinical Image Database for Radiology — Mammography, MIAS: Mammographic Image Analysis
Society, CDD-CESM: Categorized Digital Database for Low-Energy and Subtracted Contrast-Enhanced
Spectral Mammography, mAP50: mean Average Precision at an IOU threshold of 0.5, IOU: Intersection
Over Union
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reported in previous studies. The ROC curves,
confusion matrices, and representative image
outputs are presented in Figures 2-4.
Statistical analysis confirms the superior
performance of YOLO-v12-m (Table 1). We
used bootstrap confidence intervals (n=10,000)
for Fl-scores and Wilson confidence inter-
vals for precision and recall. YOLO-v12-m
achieved significantly higher Fl-scores for
both benign (0.94, 95% CI: [0.89, 0.97]) and
malignant lesions (0.93, 95% CI: [0.90, 0.96])
compared to RetinaNet and DETR. Indepen-
dent t-tests demonstrated statistically signifi-
cant differences (P-value<0.001) for all com-
parisons, with large effect sizes (t-statistics
ranging from 260.21 to 582.94 for F1-scores)
indicating substantial clinical relevance. The
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non-overlapping confidence intervals validate
YOLO-v12-m’s consistent superiority across
both lesion types, establishing its robustness
for clinical lesion detection with 221 true posi-
tives, 17 false positives, and only 16 false neg-
atives out of 237 total lesions (malignant and
benign).

Discussion

The current study showed that YOLO-v12-
m substantially outperformed DETR and
RetinaNet in both lesion localization and clas-
sification into two classes of malignant and
benign; and a comparison of our results with
those of previous work that applied DETR,
RetinaNet, and older versions of YOLO on
mammography data is reported (Table 2).

Confusion Matrix - Class Malignant

90
80
70

60

Predicted

Actual

Figure 2: Detection Transformer (DETR): (A) The Receiver Operating Characteristics (ROC)
curves demonstrate Area Under Curve (AUC) values for the detection of benign and malignant
lesions, indicating the model’s discriminative ability between these classes. (B) Representative
mammography image demonstrating model predictions with bounding boxes and confidence
scores. (C) Confusion matrices for lesion classification (left: benign, right: malignant), highlighting
accurate identification of true positives and minimizing false positives.
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Figure 3: RetinaNet: (A) The Receiver Operating Characteristics (ROC) curves demonstrate Area
Under Curve (AUC) values for the detection of benign and malignant lesions, indicating the
model’s discriminative ability between these classes. (B) Representative mammography image
demonstrating model predictions with bounding boxes and confidence scores. (C) Confusion
matrices for lesion classification (left: benign, right: malignant), highlighting accurate identifica-
tion of true positives and minimizing false positives.

Although a direct comparison is not possible
due to different datasets, the results show that
YOLO-v12 significantly outperformed older
versions employed in previous studies.

The YOLO-v12 architecture exhibits funda-
mental differences compared to versions v5,
v8, v10, and v11, enhancing its performance
in object detection tasks. Compared with pre-
vious iterations (YOLO-vl to YOLO-vl1l)
[23], YOLO-v12 incorporates R-ELAN with-
in its Backbone component, which optimizes
feature aggregation through block-level re-
sidual connections while enhancing training
stability. Additionally, the Area Attention (A2)
mechanism combined with FlashAttention
[23] enables the model to intelligently con-
centrate on critical image regions, resulting in

superior detection of small or overlapping ob-
jects, such as benign and malignant lesions in
mammography. Furthermore, FlashAttention
[23] reduces computational overhead, thereby
improving efficiency and consequently allow-
ing YOLO version 12 to deliver higher accu-
racy and speed in lesion detection compared
to earlier versions, leading to a significant
reduction in false negative cases and achiev-
ing precise differentiation between benign
and malignant classes. The implementation
of FlashAttention facilitates optimization of
memory access and computations related to
the attention mechanism. This approach re-
duces unnecessary operations and improves
data management in computational process-
es, enabling the model to execute faster with

VIII \
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Figure 4: You Only Look Once-version 12- medium variant (YOLO-v12-m): (A) The Receiver
Operating Characteristics (ROC) curves demonstrate Area Under Curve (AUC) values for the
detection of benign and malignant lesions, indicating the model’s discriminative ability between
these classes. (B) Representative mammography image demonstrating model predictions with
bounding boxes and confidence scores. (C) Confusion matrices for lesion classification (left:
benign, right: malignant), highlighting accurate identification of true positives and minimizing

false positives.

reduced resource consumption while main-
taining accuracy, ultimately resulting in en-
hanced model performance.

The YOLO-v12-m model, comprising 20.2
million parameters, emerged as an optimal
solution by achieving a well-calibrated bal-
ance between predictive accuracy and com-
putational efficiency. With an inference time
of 4.86 milliseconds on a T4 GPU, it dem-
onstrates both outstanding processing speed
and compliance with the stringent latency re-
quirements of real-time clinical applications.
This performance advantage stems primar-
ily from the architectural refinements in YO-
LO-v12—most notably the integration of the
FlashAttention mechanism—which optimizes

memory access patterns and eliminates redun-
dant computations. Together, these attributes
render YOLO-v12-m not only diagnostically
powerful but also exceptionally well-suited
for deployment in time-critical diagnostic
workflows. FlashAttention substantially en-
hances processing speed without compromis-
ing diagnostic accuracy. Consequently, these
findings confirm that the YOLO-v12-m model
is not only a diagnostically powerful tool but
also a pragmatically viable solution for imple-
mentation in real-time diagnostic workflows.
While contemporary deep learning mod-
els have achieved diagnostic accuracy levels
comparable to those of average radiologists,
the primary challenge lies in the fact that most

J Biomed Phys Eng
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existing models have been trained exclusively
on conventional DM images, as no suitable
dataset for CESM images has been available
until now. This research addresses this limita-
tion by developing a CDD-CESM that incor-
porates both DM and CESM data types, aim-
ing to enhance the development of superior
medical decision support systems.

Despite the advantages of CESM technol-
ogy, the development of deep learning models
for this imaging modality faces three major
limitations: (1) lack of diversity in available
training data, which are predominantly col-
lected from a single center and do not cover the
full spectrum of imaging protocols, equipment
variations, and patient demographic char-
acteristics (such as age, ethnicity, and breast
density), thereby limiting the model’s gener-
alizability to other methods such as Magnetic
Resonance Imaging or to populations with dif-
ferent breast densities and diverse ethnic back-
grounds; (2) a general scarcity of breast im-
ages for training deep learning models, which
can reduce the system’s performance and sta-
bility; and (3) technical and clinical factors,
including the complexity of tumor size, shape,
and texture, GPU memory limitations that hin-
der the use of high-resolution images, and the
challenge of detecting lesions in dense breast
tissue.

To substantially enhance the generalizabil-
ity of findings, future investigations will con-
centrate on improving the model’s capability
to detect lesions within dense breast tissue
through the incorporation of diverse datasets
from multiple imaging centers into the current
dataset, aiming to advance the training process
and achieve more precise evaluation.

Conclusion

This study presents an advanced application
of the YOLO-v12 model for detecting and
classifying benign and malignant lesions in
mammographic images. Evaluations show that
this model not only outperforms prominent
architectures such as RetinaNet and DETR,

but also surpasses previous versions of YOLO.
This superiority underscores the potential of
YOLO-v12 as a powerful decision-support
tool for radiologists, enhancing both the ac-
curacy and efficiency of diagnostic processes.
Nonetheless, future research should focus on
expanding the dataset to include images from
multiple imaging centers to improve the mod-
el’s generalizability, and on specialized as-
sessments of its performance in dense breast
tissues, which remain a major challenge in
mammography.
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