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Introduction

Breast cancer stands as the most prevalent malignancy among 
women worldwide, presenting significant challenges for global 
healthcare systems. According to the American Cancer Society’s 

statistics, approximately 290,000 women are diagnosed with this dis-
ease annually, with nearly 44,000 deaths [1]. The disease process begins 
with abnormal cellular proliferation within breast tissue, resulting in the 
formation of either benign or malignant masses. Malignant tumors pos-
sess the capability to metastasize to other organs throughout the body. 
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ABSTRACT
Background: Breast cancer, the most common cancer among women, necessitates 
early detection. Despite advances in Computer-Aided Diagnosis (CAD), lesion detec-
tion in mammograms remains challenging. Artificial Intelligence (AI) in radiology 
offers significant potential to enhance diagnostic accuracy in medical imaging. 
Objective: This study compares object detection methods to identify the most 
effective model for smart diagnostic systems. This comprehensive study is the first 
to apply the advanced You Only Look Once version 12 (YOLO-v12) architecture for 
the automated detection and localization of lesions in mammographic images and to 
identify their malignancy or benignity status with high precision.
Material and Methods: This comparative experimental study, utilizing retro-
spective data, also evaluated two state-of-the-art models, the Detection Transformer 
(DETR) and RetinaNet, for their performance. The models were trained and tested on 
the publicly available Categorized Digital Database for Low-Energy and Subtracted 
Contrast-Enhanced Spectral Mammography (CDD-CESM), which contains 1,982 
mammograms with 3,720 annotated lesions of various types and sizes. 
Results: YOLO-v12 demonstrated excellent diagnostic accuracy (mean Aver-
age Precision at an IOU threshold of 0.5 (mAP50)=0.98; Intersection Over Union 
(IOU)=0.95), significantly outperforming contemporary models and older YOLO  
versions.  
Conclusion: The promising and robust results clearly underscore the remarkable 
potential of artificial intelligence technologies in effectively assisting radiologists with 
the early detection and diagnosis of breast cancer. These findings advocate for the 
implementation of YOLO-v12 in clinical mammography screening applications and 
suggest that future research should prioritize real-time diagnostic systems to further 
enhance breast cancer detection capabilities.
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Early detection of breast cancer plays a cru-
cial role in enhancing survival rates, improv-
ing treatment efficacy, and reducing mortality 
rates. Nevertheless, identifying breast lesions 
in their initial stages presents considerable dif-
ficulties. These challenges arise from substan-
tial variations in the appearance, dimensions, 
and location of lesions, as well as their resem-
blance to normal breast tissue. Such factors 
can lead to diagnostic delays or errors, under-
scoring the necessity for developing more pre-
cise and efficient detection methodologies [2].

Mammography is the most reliable and ef-
fective method for screening and identifying 
suspicious breast lesions, enabling radiolo-
gists to detect concerning abnormalities, in-
cluding masses, microcalcifications (tiny cal-
cium deposits), and structural changes in the 
breast tissue. During this examination, spe-
cialists search for white spots, tissue density 
patterns, and alterations in breast shape and 
size to differentiate malignant masses (danger-
ous with growth and spreading potential) from 
benign ones (non-cancerous and harmless). 
Research has demonstrated that regular mam-
mography screening reduces mortality rates 
through early tumor detection before spread to 
other tissues occurs. Nevertheless, challeng-
es, such as increasing numbers of mammo-
grams requiring evaluation, specialists’ heavy 
workloads, visual fatigue, and variations in 
image interpretation can negatively impact  
diagnostic accuracy [3,4].

In recent years, AI has emerged as a valu-
able ally for physicians, playing a crucial 
role in medical image analysis, particularly 
mammography. Computer-Aided Diagnostic 
(CAD) systems function as secondary con-
sultants, capable of analyzing vast quantities 
of mammographic images with remarkable 
speed and precision, identifying suspicious le-
sions that warrant further investigation [5-8]. 
Deep Learning (DL) algorithms have dem-
onstrated the ability to recognize patterns 
within images that might elude human detec-
tion. These sophisticated systems can identify  

lesions with high accuracy, precisely delineate 
their boundaries, and even determine their 
classification. Recent research indicates that 
such systems can potentially detect cancer 
markers approximately six years earlier than 
conventional diagnostic methods, highlighting 
their vital contribution to improving treatment 
outcomes and enhancing patient survival rates 
[9,10]. Furthermore, AI has shown tremen-
dous potential in assisting doctors with more 
accurate lesion diagnosis, reducing workload 
burdens, and eliminating human errors stem-
ming from fatigue or inconsistent interpreta-
tions of imaging data.

The primary challenge in breast cancer de-
tection lies in achieving high accuracy when 
identifying lesions, which is complicated by 
issues such as false positives (incorrectly diag-
nosing cancer) and false negatives (failing to 
detect existing disease). These errors can lead 
to patient anxiety, unnecessary treatments, or 
delays in initiating proper care. Since accurate 
diagnosis depends heavily on radiologists’ 
skill and experience, and different interpre-
tations of the same image may yield contra-
dictory results, utilizing AI systems, i.e., DL  
models, as supportive tools appears essen-
tial [10]. The most advanced DL models for 
detecting objects (such as lesions) are called 
one-stage detection models. The most widely 
used one-stage models include YOLO (You 
Only Look Once), RetinaNet, and Detection 
Transformer (DETR). These models have 
been applied to lesion detection in mammog-
raphy images in previous studies [11-13]. 

In 2023, Demirel et al. [11] implemented 
RetinaNet using a focal loss error function 
to identify cancerous masses with an accu-
racy of 0.73, sensitivity of 0.60, and mAP50 
of 0.56 on a private dataset. Quiñones-Espín  
et al. [12] applied a YOLO-v5x model for  
breast mass detection, attaining a sensitiv-
ity of 0.80 and mAP50 of 0.60 on the VinDr-
Mammo and MIAS datasets. Duque et al. 
[13] implemented a DETR model for breast 
mass detection, attaining an mAP50 of 0.68 
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on the INbreast dataset. Nevertheless, this 
model exhibited limitations in detecting 
small and overlapping masses, particularly in 
high-density images, which were attributed 
to insufficient training data and inadequate 
diversity in training samples. In 2024, Shia 
and Ku [14] utilized a YOLO-v8 model to 
detect microcalcifications in mammography 
images on a private dataset and achieved an 
accuracy of 0.86, a sensitivity of 0.83, and 
mAP50 of 0.92, representing substantial  
improvement over previous research. 

In this research, in line with previous work 
on detecting cancer in mammography data 
[14], we aimed to improve the performance by 
applying, for the first time, the latest version 
of the YOLO algorithm, i.e., v12, on mam-
mography data. Two other one-stage models, 
including DETR and RetinaNet, were also in-
vestigated. A public dataset, specifically the 
Categorized Digital Database for Low Energy 
and Subtracted Contrast-Enhanced Spectral 
Mammography (CDD-CESM), was utilized 
to train and test the models.

Material and Methods
In this comparative experimental study using 

retrospective data, three one-stage detection 
models: DETR, RetinaNet, and YOLO-v12 
(medium variant), were trained and evaluated 
on the CDD-CESM dataset. These one-stage 
approaches are particularly suitable for real-
time clinical applications due to their excep-
tional speed and accuracy, offering significant 
potential for rapid and precise lesion identi-
fication in mammographic imagery. To im-
prove the performance, transfer learning tech-
niques were employed utilizing pre-trained 
weights from the Common Objects in Con-
text (COCO) dataset. Key hyperparameters 
were meticulously calibrated for each model, 
including input image dimensions, padding 
techniques, optimization algorithms (such as 
Adam, AdamW, and Stochastic Gradient De-
scent (SGD)), and error functions (including 
Focal Loss for classification and Smooth L1 

for regression).
The lesion identification process across all 

examined models comprises three fundamen-
tal automated stages: 1) the extraction of key 
features from mammography images using 
Convolutional Neural Networks (CNNs) as 
the backbone architecture; 2) processing these 
features in the neck section to enhance spatial 
and semantic information; and 3) employing 
the detection head to predict the precise le-
sions’ location (bounding box coordinates) 
and classification (benign or malignant). The 
following sections examine the CDD-CESM 
dataset, the architecture of each model, the 
implementation of transfer learning, and the 
evaluation metrics.

CDD-CESM dataset
This study utilized the CDD-CESM dataset 

comprising mammogram images from 326 fe-
male individuals. Each subject typically had 
8 images, including 4 images for each breast 
(low-energy and CESM subtraction images 
in Cranio-Caudal (CC) and Medio-Lateral 
Oblique (MLO) views). From the initial col-
lection of 2006 images, 24 were excluded due 
to incorrect information, resulting in a final set 
of 1982 images, where 757 images were nor-
mal (without lesions), and the remaining 1225 
images contained a total of 1744 malignant 
and 1219 benign lesions. The malignant and 
benign labels were given to each lesion based 
on pathology reports. Out of 326 subjects, 62 
individuals had images with no lesions, 115 
subjects had images with only benign lesions, 
and the remaining 149 subjects had images 
with at least one malignant lesion. Figure 1  
illustrates the distribution of the dataset [15].

CESM represents an advanced breast imag-
ing technology that demonstrates superior di-
agnostic accuracy compared to conventional 
Digital Mammography (DM) and operates 
through intravenous administration of non-
ionic iodinated contrast material (adminis-
tered at a dosage of 1.5 milliliters per kilogram 
of body weight). This methodology captures 
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two distinct images for each projection (utiliz-
ing CC and MLO views): one acquired with 
low energy (26-31 kV) resembling standard 
full-field DM, and another obtained with high 
energy (45-49 kV) that exhibits greater sensi-
tivity to the contrast agent. Then, subtraction 
of the high-energy images from the low-ener-
gy images eliminates normal breast tissue and 
highlights regions with high contrast uptake, 
which are typically markers of abnormal vas-
cularization and possible malignancy [15].

DETR
In this study, the DETR model identified le-

sions in mammography images through three 
primary stages. Initially, in the backbone sec-
tion, a ResNet-50 CNN extracted feature maps 
containing crucial visual information from the 
input image. Next, in the neck section, these 
feature maps underwent flattening and merged 
with positional encoding to preserve spatial 
information; subsequently, a Transformer 
Encoder with self-attention mechanisms pro-
cessed these features to comprehend relation-
ships between different image regions and 
generated context-aware, enriched features. 
Finally, in the detection head, the encoder’s 
output, alongside a fixed number of object 
queries, entered the transformer decoder; the 

decoder refined these queries through self-at-
tention and cross-attention, producing output 
vectors that fed into Feed-Forward Networks. 
These networks independently predicted le-
sion classification (malignant or benign) and 
the corresponding bounding box coordinates. 
This process was trained using a Hungar-
ian Matching bipartite loss function to ensure  
accurate predictions without overlaps [16].

RetinaNet
The RetinaNet model used in this study com-

prised three principal components. The Back-
bone section employed ResNet-50, resolv-
ing the gradient vanishing problem through 
skip connections while extracting multi-level 
features from mammography images. In the 
neck component, the Feature Pyramid Net-
work intelligently combined low-level fea-
tures (containing precise spatial details) with 
high-level features (rich in semantic informa-
tion) via top-down pathways and lateral con-
nections, generating multi-scale feature maps. 
The feature maps were passed to the detection 
head, comprising two parallel subnetworks: 
1) a classification branch predicting lesion 
type (benign or malignant) using focal loss, 
and 2) a regression branch estimating bound-
ing box coordinates. Finally, Non-Maximum  

Figure 1: The dataset distribution
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Suppression (NMS) eliminated redundant and 
overlapping boxes, leading to enhanced de-
tection accuracy. This integrated architecture 
maintained an optimal balance between speed 
and precision, demonstrating remarkable ca-
pability in detecting lesions of varying dimen-
sions in mammography images [17].

YOLO-v12
The YOLO-v12 model comprised three 

principal components that worked in concert 
to accurately detect lesions in mammography 
images. The backbone section utilized Resid-
ual Efficient Layer Aggregation Networks (R-
ELAN), employing skip connections and 7×7 
separable (depth-wise) convolutions to effi-
ciently extract multi-scale features while miti-
gating the gradient vanishing problem. In the 
neck section, the Path Aggregation Network 
enriched and integrated the extracted features 
by establishing bidirectional connections be-
tween various layers: downward pathways 
transmitted semantic information while up-
ward pathways conveyed textural details. Ad-
ditionally, the area attention mechanism with 
FlashAttention enabled intelligent focus on 
critical image areas. Finally, the detection head 
received the refined feature maps and simul-
taneously predicted both the precise position 
of lesions (boundary boxes) and their classi-
fication (benign or malignant). It then applied 
the NMS algorithm to eliminate redundant 
boxes, thereby delivering high-precision final  
detection results [18-20].

Transfer Learning
Transfer learning represents an efficient 

methodology in deep learning, employed in 
this research to enhance the performance of 
lesion detection models in mammography im-
ages. We utilized pre-trained models on the 
COCO dataset, which is a large-scale object 
detection dataset, as a starting point, which 
we then optimized for lesion detection and 
classification on our mammography dataset. 
The transfer learning process encompassed  

several fundamental stages: initially, we load-
ed the pre-trained model weights and con-
verted the CDD-CESM dataset into a standard 
format compatible with the intended model 
(for instance, YOLO) to ensure structural 
compatibility with the models. Subsequently, 
we replaced the final fully connected and clas-
sification layers of the models according to the 
number of classes. We then proceeded with 
model fine-tuning. Fine-tuning constitutes a 
process within transfer learning whereby a 
pre-trained model undergoes optimization for 
a specific problem. Two principal fine-tuning 
methodologies exist: 1) partial fine-tuning, 
where only the final layers receive training 
and the weights of other layers are frozen, and 
2) full fine-tuning, where the entire network 
undergoes retraining [21].

In this research, we implemented the lat-
ter approach. Given the adequate volume of 
available data (1982 images from 326 indi-
viduals), we retrained the complete network 
to optimize the extracted features for breast 
lesion detection. The transfer learning ap-
proach not only reduced training time but also 
significantly enhanced detection accuracy by 
transferring general object recognition knowl-
edge to the specialized domain of breast lesion  
identification.

Preprocessing, Dataset Partition-
ing, and Hyperparameter Settings

A stratified 5‑fold cross‑validation was em-
ployed to ensure balanced class distribution 
(normal, malignant, and benign), prevent data 
leakage, and enable accurate evaluation. In 
each fold, 80% of the images per class were 
allocated for training, 10% for validation, and 
10% for testing, with final performance met-
rics averaged across all five folds. For data 
preprocessing, images underwent normaliza-
tion by subtracting the mean and dividing by 
the standard deviation to standardize pixel 
values [15]. Hyperparameter settings includ-
ed training for 100 epochs with a batch size 
of 16, using the AdamW optimizer with an  
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initial learning rate of 0.0001 and a dropout 
rate of 0.15 to mitigate overfitting. The experi-
ments were conducted on a hardware platform 
equipped with dual NVIDIA T4 GPUs, 15 
GB of dedicated GPU memory, and 29 GB of  
system RAM.

Performance Metrics
The models’ performances of lesion de-

tection and classification were meticulously 
evaluated using standard metrics, including 
precision, recall, mean average precision at 
an Intersection Over Union (IOU) threshold 
of 0.5 (mAP50), IOU, area under the curve of 
the receiver operating characteristics (AUC-

ROC), and confusion matrix [22].

Results
Among the three proposed models, 

YOLO‑v12‑m achieved the highest perfor-
mance for both benign and malignant lesion 
detection, with mAP50=0.98 and IOU=0.95. 
For malignant lesions, it obtained a preci-
sion of 0.92 and a recall of 0.93. RetinaNet 
also demonstrated robust detection capability 
(mAP50=0.79), whereas DETR exhibited the 
lowest overall performance (mAP50=0.65). 
Detailed performance metrics for each mod-
el are provided in Table 1, while Table 2 
compares the proposed models with results  

Model Class Precision Precision 
_95%_CI Recall Recall 

_95%_CI
F1-

Score
F1-Score 
_95%_CI mAP50 IOU

DETR
Benign 0.64 [0.53, 0.74] 0.66 [0.54, 0.76] 0.65 [0.55, 0.73]

0.65 0.80
Malignant 0.84 [0.77, 0.89] 0.73 [0.66, 0.79] 0.77 [0.73, 0.83]

RetinaNet
Benign 0.88 [0.78, 0.94] 0.79 [0.69, 0.87] 0.83 [0.76, 0.90]

0.79 0.86
Malignant 0.92 [0.87, 0.96] 0.80 [0.73, 0.85] 0.86 [0.81, 0.90]

YOLO-v12-m
Benign 0.94 [0.87, 0.98] 0.93 [0.85, 0.97] 0.94 [0.89, 0.97]

0.98 0.95
Malignant 0.92 [0.87, 0.95] 0.93 [0.88, 0.96] 0.93 [0.90, 0.96]

DETR: Detection Transformer, YOLO-v12-m: You Only Look Once-version 12- medium variant, CI: Confidence Intervals, 
mAP50: mean Average Precision at an IOU threshold of 0.5, IOU: Intersection Over Union

Table 1: The lesion detection and classification performance metrics for each model with 95% 
Confidence Intervals (CI).

Method Reference Year Database mAP50 IOU
DETR [13] 2024 INbreast 0.68 -

RetinaNet [11] 2023 Private dataset 0.56 -
YOLO-v5 [12] 2023 VinDr-Mammo, MIAS 0.60 -
YOLO-v8 [14] 2024 Private dataset 0.92 -

DETR
Current Study 2025 CDD-CESM

0.65 0.80
RetinaNet 0.79 0.86

YOLO-v12-m 0.98 0.95
DETR: Detection Transformer, YOLO-v5: You Only Look Once-version 5, YOLO-v8: You Only Look 
Once-version 8, YOLO-v12-m: You Only Look Once-version 12- medium variant, VinDr-Mammo: Viet-
namese Clinical Image Database for Radiology – Mammography, MIAS: Mammographic Image Analysis 
Society, CDD-CESM: Categorized Digital Database for Low-Energy and Subtracted Contrast-Enhanced 
Spectral Mammography, mAP50: mean Average Precision at an IOU threshold of 0.5, IOU: Intersection 
Over Union

Table 2: Comparison with previous studies
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reported in previous studies. The ROC curves, 
confusion matrices, and representative image 
outputs are presented in Figures 2-4.

Statistical analysis confirms the superior  
performance of YOLO-v12-m (Table 1). We 
used bootstrap confidence intervals (n=10,000) 
for F1-scores and Wilson confidence inter-
vals for precision and recall. YOLO-v12-m 
achieved significantly higher F1-scores for 
both benign (0.94, 95% CI: [0.89, 0.97]) and 
malignant lesions (0.93, 95% CI: [0.90, 0.96]) 
compared to RetinaNet and DETR. Indepen-
dent t-tests demonstrated statistically signifi-
cant differences (P-value<0.001) for all com-
parisons, with large effect sizes (t-statistics 
ranging from 260.21 to 582.94 for F1-scores) 
indicating substantial clinical relevance. The 

non-overlapping confidence intervals validate 
YOLO-v12-m’s consistent superiority across 
both lesion types, establishing its robustness 
for clinical lesion detection with 221 true posi-
tives, 17 false positives, and only 16 false neg-
atives out of 237 total lesions (malignant and 
benign).

Discussion
The current study showed that YOLO-v12-

m substantially outperformed DETR and 
RetinaNet in both lesion localization and clas-
sification into two classes of malignant and 
benign; and a comparison of our results with 
those of previous work that applied DETR, 
RetinaNet, and older versions of YOLO on 
mammography data is reported (Table 2). 

Figure 2: Detection Transformer (DETR): (A) The Receiver Operating Characteristics (ROC) 
curves demonstrate Area Under Curve (AUC) values for the detection of benign and malignant 
lesions, indicating the model’s discriminative ability between these classes. (B) Representative  
mammography image demonstrating model predictions with bounding boxes and confidence 
scores. (C) Confusion matrices for lesion classification (left: benign, right: malignant), highlighting  
accurate identification of true positives and minimizing false positives. 
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Although a direct comparison is not possible 
due to different datasets, the results show that 
YOLO-v12 significantly outperformed older 
versions employed in previous studies.

The YOLO-v12 architecture exhibits funda-
mental differences compared to versions v5, 
v8, v10, and v11, enhancing its performance 
in object detection tasks. Compared with pre-
vious iterations (YOLO-v1 to YOLO-v11) 
[23], YOLO-v12 incorporates R-ELAN with-
in its Backbone component, which optimizes  
feature aggregation through block-level re-
sidual connections while enhancing training 
stability. Additionally, the Area Attention (A2) 
mechanism combined with FlashAttention 
[23] enables the model to intelligently con-
centrate on critical image regions, resulting in 

superior detection of small or overlapping ob-
jects, such as benign and malignant lesions in 
mammography. Furthermore, FlashAttention 
[23] reduces computational overhead, thereby 
improving efficiency and consequently allow-
ing YOLO version 12 to deliver higher accu-
racy and speed in lesion detection compared 
to earlier versions, leading to a significant 
reduction in false negative cases and achiev-
ing precise differentiation between benign 
and malignant classes. The implementation 
of FlashAttention facilitates optimization of 
memory access and computations related to 
the attention mechanism. This approach re-
duces unnecessary operations and improves 
data management in computational process-
es, enabling the model to execute faster with  

Figure 3: RetinaNet: (A) The Receiver Operating Characteristics (ROC) curves demonstrate Area 
Under Curve (AUC) values for the detection of benign and malignant lesions, indicating the 
model’s discriminative ability between these classes. (B) Representative mammography image 
demonstrating model predictions with bounding boxes and confidence scores. (C) Confusion 
matrices for lesion classification (left: benign, right: malignant), highlighting accurate identifica-
tion of true positives and minimizing false positives. 

VIII



J Biomed Phys Eng

reduced resource consumption while main-
taining accuracy, ultimately resulting in en-
hanced model performance.

The YOLO‑v12‑m model, comprising 20.2 
million parameters, emerged as an optimal 
solution by achieving a well‑calibrated bal-
ance between predictive accuracy and com-
putational efficiency. With an inference time 
of 4.86 milliseconds on a T4 GPU, it dem-
onstrates both outstanding processing speed 
and compliance with the stringent latency re-
quirements of real‑time clinical applications. 
This performance advantage stems primar-
ily from the architectural refinements in YO-
LO‑v12—most notably the integration of the 
FlashAttention mechanism—which optimizes 

memory access patterns and eliminates redun-
dant computations. Together, these attributes 
render YOLO‑v12‑m not only diagnostically 
powerful but also exceptionally well‑suited 
for deployment in time‑critical diagnostic 
workflows. FlashAttention substantially en-
hances processing speed without compromis-
ing diagnostic accuracy. Consequently, these 
findings confirm that the YOLO-v12-m model 
is not only a diagnostically powerful tool but 
also a pragmatically viable solution for imple-
mentation in real-time diagnostic workflows.

While contemporary deep learning mod-
els have achieved diagnostic accuracy levels 
comparable to those of average radiologists, 
the primary challenge lies in the fact that most 

One-Stage Lesion Detection in Mammograms

Figure 4: You Only Look Once-version 12- medium variant (YOLO-v12-m): (A) The Receiver  
Operating Characteristics (ROC) curves demonstrate Area Under Curve (AUC) values for the  
detection of benign and malignant lesions, indicating the model’s discriminative ability between 
these classes. (B) Representative mammography image demonstrating model predictions with 
bounding boxes and confidence scores. (C) Confusion matrices for lesion classification (left: 
benign, right: malignant), highlighting accurate identification of true positives and minimizing 
false positives.
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existing models have been trained exclusively 
on conventional DM images, as no suitable 
dataset for CESM images has been available 
until now. This research addresses this limita-
tion by developing a CDD-CESM that incor-
porates both DM and CESM data types, aim-
ing to enhance the development of superior 
medical decision support systems.

Despite the advantages of CESM technol-
ogy, the development of deep learning models 
for this imaging modality faces three major  
limitations: (1) lack of diversity in available 
training data, which are predominantly col-
lected from a single center and do not cover the 
full spectrum of imaging protocols, equipment 
variations, and patient demographic char-
acteristics (such as age, ethnicity, and breast 
density), thereby limiting the model’s gener-
alizability to other methods such as Magnetic 
Resonance Imaging or to populations with dif-
ferent breast densities and diverse ethnic back-
grounds; (2) a general scarcity of breast im-
ages for training deep learning models, which 
can reduce the system’s performance and sta-
bility; and (3) technical and clinical factors, 
including the complexity of tumor size, shape, 
and texture, GPU memory limitations that hin-
der the use of high-resolution images, and the 
challenge of detecting lesions in dense breast 
tissue.

To substantially enhance the generalizabil-
ity of findings, future investigations will con-
centrate on improving the model’s capability 
to detect lesions within dense breast tissue 
through the incorporation of diverse datasets 
from multiple imaging centers into the current 
dataset, aiming to advance the training process 
and achieve more precise evaluation.

Conclusion
This study presents an advanced application 

of the YOLO‑v12 model for detecting and 
classifying benign and malignant lesions in 
mammographic images. Evaluations show that 
this model not only outperforms prominent  
architectures such as RetinaNet and DETR, 

but also surpasses previous versions of YOLO. 
This superiority underscores the potential of 
YOLO‑v12 as a powerful decision‑support 
tool for radiologists, enhancing both the ac-
curacy and efficiency of diagnostic processes. 
Nonetheless, future research should focus on 
expanding the dataset to include images from 
multiple imaging centers to improve the mod-
el’s generalizability, and on specialized as-
sessments of its performance in dense breast 
tissues, which remain a major challenge in 
mammography.
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