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 ABSTRACT 

Background: Artificial intelligence (AI) powered technologies can help detect Candida 

albicans (C. albicans) infections, which are a public health challenge due to increasing 

incidence rates and conventional therapy resistance.  

Purpose: This review explores recent advancements, methodologies, and clinical implica-

tions in the AI-driven microscopic detection of C. albicans. 

Materials and Method: A literature search was conducted across multiple databases, 

including PubMed, Scopus, Embase, Web of Science, and Google Scholar. Following a 

thorough review of the retrieved articles, 7 studies were selected for inclusion in this re-

view.  

Results: This review analyzed 7 studies that employed AI and machine learning (ML) to 

detect the presence of C. albicans. The most commonly used dataset for detecting C. albi-

cans through AI was microscopic images. Two studies employed time-lapse microscopy, 

and another study used the microorganism's smell fingerprint or volatile organic com-

pounds with an impressive accuracy of 97.70%. The accuracy of detecting C. albicans 

through AI using microscopic images ranged from 63% to 100% depending on the model 

used. 

Conclusion: AI can improve the detection of C. albicans infections. It can enhance the 

accuracy, speed, and efficiency of detection, providing clinicians with invaluable support 

in identifying infections earlier, optimizing treatment strategies, and ultimately improving 

patient outcomes. 
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Introduction 

Fungal infections pose a serious challenge in intensive 

care units (ICUs), significantly increasing patient mor-

bidity and mortality. Among these, candidiasis, primari-

ly caused by Candida albicans (C. albicans), is the most 

prevalent form of invasive fungal infection [1-4]. C. 

albicans is a commensal yeast, commonly found in the 

human microbiota, particularly on the mucosal surfaces 

of the gastrointestinal and genitourinary tracts [5-9].  

While typically harmless in healthy individuals, C. 

albicans can become pathogenic in those with compro-

mised immune systems or underlying health conditions 

[6, 9-11]. The clinical manifestations of candidiasis 

range from mild mucosal infections- such as oral thrush 

and vaginal yeast infections- to severe, potentially life-

threatening systemic infections like candidemia [7, 10, 

12-13].  

Early and accurate diagnosis of candidiasis is criti-

cal, given the limited range of effective antifungal 

treatments and the necessity for prompt therapeutic in-

tervention. However, conventional diagnostic methods 

often suffer from delayed turnaround times, which hin-
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der timely treatment and adversely affect patient out-

comes [14]. 

Currently, the gold standard for diagnosing invasive 

candidiasis includes histopathological analysis, positive 

cultures from sterile sites, microscopic identification of 

yeast in tissue specimens, and detection in blood cul-

tures [15]. Although non-culture-based methods- such 

as beta-D-glucan assays, germ tube antibody detection, 

nucleic acid amplification tests, and T2 Biosystems-

based diagnostics- are available, they are typically ex-

pensive, require specialized expertise, and are often 

inaccessible in resource-limited settings. These methods 

also involve processing times of 72-96 hours, with anti-

fungal susceptibility testing requiring an additional 48–

72 hours, further delaying treatment and increasing mor-

tality [15-17].  

Given these challenges, there is an urgent need for 

innovative, rapid, and practical diagnostic approaches 

for detecting Candida infections. 

Artificial intelligence (AI) offers promising solu-

tions in this context. By leveraging large datasets, AI 

systems can detect complex patterns and features, ena-

bling advances across various domains, including 

healthcare [18-24]. Originally conceptualized in the 

1940s, AI refers to the ability of machines to perform 

tasks that typically require human intelligence [18-19, 

25]. A key subset of AI is machine learning (ML), 

which allows systems to learn patterns from data 

through statistical and probabilistic modeling without 

being explicitly programmed [19, 24, 26]. Within ML, 

deep learning (DL) uses neural networks with multiple 

hidden layers to capture high-level abstractions in data, 

enabling more accurate predictions and classifications 

[23, 27-28].  

In infectious disease management, AI has demon-

strated substantial potential in the detection, classifica-

tion, and prediction of pathogens [29-35]. By integrat-

ing data from genomic, proteomic, and clinical sources, 

AI models can uncover subtle indicators of C. albicans 

presence, facilitating rapid and precise diagnosis and 

supporting timely clinical decision-making [1, 32, 34-

37]. Additionally, AI has transformed drug discovery by 

accelerating the identification and optimization of new 

therapeutic agents through sophisticated data analysis 

techniques [38-43]. 

This systematic review aims to explore the evolving  

role of AI in the detection and management of C. albi-

cans infections, highlighting recent technological ad-

vancements and their potential to reshape current diag-

nostic practices. 

 

Materials and Method 

The systematic review's reporting adheres to the Pre-

ferred Reporting Items for Systematic Reviews and Me-

ta-Analyses, extension for Diagnostic Test Accuracy 

Studies (PRISMA-DTA) guideline [44]. Furthermore, 

the protocol for this review was registered at PROS-

PERO under the registration number CRD42024541235. 

This ensures transparency and rigor in the review pro-

cess, aligning with established standards in the field of 

diagnostic test accuracy studies. 

The study evaluated relevant research based on the 

PICO question exploring whether AI can enhance the 

diagnostic accuracy of C. albicans compared to the es-

tablished reference standard. We included studies that 

met the following criteria: 

Population: Studies utilized AI-powered technolo-

gies to detect and classify C. albicans; 

Intervention and comparison: AI-driven detection 

and classification of C. albicans compared to reference 

standard tests; 

Outcomes: Accuracy, sensitivity or recall, precision, 

specificity, and F1-score.  

In case of more than one result, the best performance 

was reported. 

Conference abstracts, case reports, and review litera-

ture were excluded from the study. 

A thorough search of relevant literature was per-

formed in several databases including PubMed, Scopus, 

Embase, Web of Science, and the Google Scholar 

search engine, up to February 2024. 

The search was limited to solely journal publica-

tions, with no constraints on language or publication 

year. Customized keywords and search queries were 

utilized for each database (Table 1). Besides the elec-

tronic search, a manual search was conducted among 

the listed included studies to uncover any potentially 

missed articles (Table 1). 

Citation management was conducted using Endnote 

X9 (Clarivate, Philadelphia, PA, USA). Initially, a sear-

ch yielded 2,245 studies. After eliminating duplicate 

articles (n= 357) using the “Find Duplicates” option in  
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Table 1: The strategy for Boolean search 

 

Database Keywords Results 

PubMed 

("candida albicans"[MeSH Terms] OR ("candida"[All Fields] AND "albicans"[All Fields]) OR "candida 

albicans"[All Fields]) AND ("artificial intelligence"[MeSH Terms] OR ("artificial"[All Fields] AND "intelli-

gence"[All Fields]) OR "artificial intelligence"[All Fields] OR ("machine learning"[MeSH Terms] OR ("ma-

chine"[All Fields] AND "learning"[All Fields]) OR "machine learning"[All Fields]) OR ("deep learn-

ing"[MeSH Terms] OR ("deep"[All Fields] AND "learning"[All Fields]) OR "deep learning"[All Fields])) 

76 

Google Scholar allintitle: ("candida albicans") AND ("artificial intelligence" OR "machine learning" OR "deep learning") 3 

Embase 
('candida albicans'/exp OR 'candida albicans') AND ('artificial intelligence'/exp OR 'artificial intelligence' OR 

'machine learning'/exp OR 'machine learning' OR 'deep learning'/exp OR 'deep learning') 
1,431 

Scopus 
TITLE-ABS-KEY (( "candida albicans") AND ("artificial intelligence" OR "machine learning" OR "deep 

learning")) 
123 

ScienceDirect ("candida albicans") AND ("artificial intelligence" OR "machine learning" OR "deep learning") 612 

 

EndNote X9 followed by manual verification by R.S., 

2,033 articles remained for further evaluation. Upon 

evaluating the titles and abstracts of these articles and 

discarding studies deemed irrelevant independently by 

two evaluators (R.S. and F.J.) (n= 2,011), 22 studies 

were selected for a detailed full-text assessment. Any 

disagreements were resolved through consensus involv-

ing a third investigator (S.L.). Ultimately, 7 studies met 

the criteria for inclusion in this review. 

The data extraction procedure entailed independent 

extraction of data from the full text of the included arti-

cles by two reviewers (R.S. and F.J.), resulting in a sub-

stantial inter-rater agreement rate of 96%. A third re-

viewer (S.L.) also reviewed the extracted data which 

encompassed the following information: the primary 

author's name, publication year, study object, Candida 

species analyzed, the data set used for training, valida-

tion, and testing of the model, inclusion and exclusion 

criteria for each study, any pre-processing or augmenta-

tion techniques used, the type of model employed, its 

task and performance.  

Two reviewers (R.S. and F.J.) independently as-

sessed the risk of bias in each study using the Quality 

Assessment of Diagnostic Accuracy Studies-2 (QUAD-

AS-2) tool [45]. Any disagreements were resolved 

through consensus with a third investigator (S.L.). 

 

Results 

Study Selection and Characteristics 

The study selection process is outlined in Figure 1 using 

the PRISMA flow diagram. After screening and apply-

ing eligibility criteria, 7 studies were included in this  
 

 
 

Figure 1: The flowchart of the search in this review 
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Figure 2: Cumulative total number of published studies 

 

systematic review. These studies were published be-

tween 2021 and 2024, with a noticeable increase in pub-

lications in 2024 (Figure 2). A summary of their charac-

teristics is presented in Table 2 (Figures 1-2, Table 2). 

Data Modalities 

The included studies utilized 3 primary data modalities 

for AI-based detection of C. albicans including (1) mi-

croscopic images (n=5) [14, 37, 46-48]; (2) time-lapse 

microscopy videos (n=2) [46, 49]; and (3) volatile or-

ganic compounds (VOC) (microorganisms' smell fin-

gerprint) (n=1) [1]. 

Several studies included C. albicans alongside other 

species for multi-class classification, while others fo-

cused solely on C. albicans detection. 

Performance of Microscopic Image-Based AI Models 

Five studies employed microscopic images to train and 

test AI models for classifying C. albicans [14, 37, 46- 

 

Table 2: Summary of the findings of included studies 

 

Author/ 

Year 
Objective 

Type of Spe-

cies 

Data Set 

(Training, 

Validation, 

Testing) 

Eligibility 

criteria (if 

available) 

Labeling 

procedure 

Machine 

Learning 

Task 

Pre-processing 
Type 

of Dataset 
Model 

Perfor-

mance 

meas-

ured 

Out-

comes 

Bastos 

2024 [1] 

Identification 

of Candida 
spp. 

C. albicans, C. 
glabrata, C. 

haemulonii, C. 

kodamaea 
ohmeri, C. 

krusei, C. 

parapsilosis 

397 (238/ 79/ 80 

cycles) 

Laboratory 
labeling and 

cultivating in 

Petri dishes 

Classification NA 

Time series 

data by 

Volatile 
organic 

compounds 

KNN, 
Inception 

time, TSFC, 

STC, RISE, 
ROCKET, 

BOSS, 

HIVE 
COTE 1, 

HIVE 

COTE 2 

Accuracy 
97.46

% 

Sensitivi-
ty 

97.81
% 

Specifici-

ty 

99.51

% 

Precision 
97.54

% 

F1-score 
97.60
% 

Sarkar 

2024 

[46] 

Enhancing 

the classifi-
cation accu-

racy of the 

Candida spp. 

using neu-

trophil 

morphody-
namics 

C. albicans, C. 

glabrata 

Testing: 144 

videos 1152 

videos in 9 

cycles (80%/ 

20%/-) 

Assigning 

each image or 
video a label 

indicating the 

infection 
scenario 

Classification 

Reduce noises, 
blending blurred 

images with 

Original Imag-
es, enhanced 

contrasts, 

unsharp mask-
ing, clipping 

Pixel Values, 

resizing 

Microscopic 

images 

Time-lapse 

microscopy 

videos 

CNN (Res-

Net50, 

Incep-
tionV3, 

Xception, 

Efficient-

NetB5) 

RNN (GRU) 

Transform-
ers 

AMIT 

Accuracy 100% 

Recall 76% 

Precision 80% 

F1-score 78% 

Shan-
karna-

rayan 

2024 
[14] 

Identification 

of Candida 

spp. 

C. albicans, C. 

auris, C. gla-
brata, C. 

haemulonii 

19000 images 

(12800/ 3200/ 

6200) 

Problematic 
images were 

excluded 

(blurred, non-
focused 

images, low-

cell counts 
images) 

Classification 

Resize, rescale 

the pixel value, 

augmentation 
(random rota-

tion, translation, 

flip, zoom) 

Microscopic 
images 

custom 

CNN 
VGG16, 

ResNet50, 

Incep-
tionV3, 

Efficient-

NetB0, 
Efficient-

NetB7 

Accuracy 74.6% 

Sensitivi-

ty 
77.1% 

Specifici-
ty 

92.4% 

Precision 77.9% 

F1-score 
77.14

% 

AUC 91.9% 

Belyaev 

2022 

[49] 

Analyzing 

neutrophils 

response 

when en-

countering 
fungal 

pathogens 

C. albicans, C. 
glabrata 

NA NA Classification 
Automated 
segmentation 

Live cell 

images 
Time-lapse 

microscopy 

AMTI 

Bayesian 

classifier 

Accuracy 63% 

Bettauer 

2022 
[47] 

C. albicans 

detection 
using mor-

C. albicans 
1214 images 

(216/ 94/ -) 

Manual 

labeling 

Detection 

Classification 
NA 

Microscopic 

images 
FCOS 

Accuracy 81.8% 

Sensitivi-

ty 
82.4% 
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phologies Precision 66.5% 

F1-score 73.7% 

Jamka 

2021 
[48] 

Microorgan-
ism detection 

in cosmetic 

samples 

Bacillus subti-

lis, C. albicans, 
C. dubliniensis, 

C. glabrata, C. 

tropicalis, E. 
coli, Enteroco-

ccus faecalis, 

Klebsiella 
pneumoniae, 

Listeria mono-

cytogenes, 
Morganella 

morganii, P. 

aeruginosa, P. 

mirabilis, P. 

vulgaris, Rho-

dococcus equi, 
S. agalactiae, S. 

aureus, S. 

epidermidis, 
Serratia mar-

cescens, Sal-

monella typhi-
murium 

NA NA 
Detection 

Classification 
NA 

Microscopic 

images 
CNN Accuracy 97% 

Zawadz
ki 2021 

[37] 

Microorgan-

ism detection 

C. albicans, E. 
coli, P. aerugi-

nosa, S. aureus 

2,271 pairs of 

images (1816/ -/ 

455) (for cell 
detection) 

2,000 images 

(7:3:-) (for cell 
classification) 

Gram staining 
and modifica-

tions 

Detection 

Classification 

Manual cell 

segmentation 
Images were 

resized, cut, and 

cropped. 

Microscopic 

images 

CNN 

DNN 
Accuracy 97% 

Abbreviations: 

AMIT: Algorithm for Migration and Interaction Tracking; CNN: Convolutional Neural Network; DNN: Deep, Neural Network; C. albicans:  Candida albicans; C. 

dubliniensis: Candida dubliniensis; C. glabrata: Candida glabrata; C. tropicalis: Candida tropicalis; E. coli: Escherichia coli; FCOS: Fully Convolutional One-stage 

Object Detector; MRSA: Methicillin-resistant Staphylococcus aureus; P. aeruginosa: Pseudomonas aeruginosa; P. mirabilis: Proteus mirabilis; P. vulgaris: Proteus 

vulgaris; RNN: Recurrent Neural Network; S. agalactiae: Streptococcus agalactiae; S. aureus: Staphylococcus aureus; S. epidermidis: Staphylococcus epidermidis 

 

48]. Analysis of the image dataset revealed varying ac-

curacy ranges of AI-based models, ranging from 63% to 

100%. Sensitivity ranged from 56% to 88.5%, precision 

from 62% to 100%, and F1 score from 59% to 88%. 

These studies used convolutional neural networks 

(CNNs); including architectures like VGG16, Res-

Net50, EfficientNet, and fully convolutional one-stage 

object detectors (FCOS). Preprocessing steps often in-

cluded image resizing, enhancement, and data augmen-

tation. 

Performance of Video-Based AI Models 

Two studies utilized time-lapse microscopy videos to 

analyze neutrophil interactions with Candida species 

[46, 49]. The models used included CNNs, recurrent 

neural networks (specifically GRUs), and transformer-

based architectures. Their performance varied depend-

ing on whether the input consisted of video sequences 

or static time-lapse frames and classification accuracy 

ranged from 96.2% to 100%, while sensitivity varied 

between 73% and 83%. 

Performance of VOC-Based AI Models 

One study used VOC time-series data captured from  

Petri dish cultures to identify C. albicans among other 

Candida species [1]. This study utilized time-series 

classification models, including KNN, InceptionTime, 

and HIVE-COTE ensembles. The accuracy ranged from 

52.5% to 97.46%, sensitivity from 42.66% to 97.81%, 

specificity from 90.16% to 99.51%, precision from 

39.47% to 97.54%, and F1 score from 40.24% to 

97.6%. 

Meta-Analysis Feasibility 

The execution of a meta-analysis was unfeasible owing 

to significant heterogeneity within datasets and the var-

ied AI models employed. Moreover, a deficiency in 

reported essential metrics, such as true positive, true 

negative, false positive and false negative rates, further 

hindered the feasibility of conducting a comprehensive 

meta-analysis. 

Risk of Bias Assessment 

Figure 3 illustrates the outcomes of the risk of bias 

evaluations and applicability assessments conducted 

using QUADAS-2. Most studies showed low bias in 

flow and timing (86%). In the index test domain, 14% 

had high bias, 14% were unclear, and 72% showed low  
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Figure 3: The outcome of the quality assessment of reviewed studies using the QUADAS-2 tool; a) the assessment of capability; b) the 

risk of bias assessment 

 

bias. However, patient selection mostly had a high bias 

(57%). Regarding the reference standard, 43% had a 

low bias, 14% had a high bias, and 43% were unclear. 

 

Discussion 

Utilizing supplementary diagnostic methodologies can 

enhance the timely identification of fungal infections, 

consequently influencing treatment strategies and pa-

tient survival outcomes. Our review examined seven 

studies employing AI methodologies to identify and 

categorize C. albicans. Despite notable heterogeneity 

across the body of evidence, the AI models showcased 

considerable sensitivity, specificity, and accuracy across 

different study designs and reporting methods. 

AI and ML are increasingly being integrated into 

medical imaging to support disease diagnosis, bi-

omarker detection, prognosis prediction, and tissue clas-

sification [14, 23, 50]. This trend extends to the identifi-

cation of fungal pathogens, where AI can process com-

plex visual datasets with enhanced efficiency and con-

sistency [51-56]. 

In this review, five of the included studies used mi-

croscopic images for the detection of C. albicans [14, 

37, 46-48]. Two main AI approaches were identified: 

direct and indirect visual detection. The direct approach 

involves analyzing stained yeast images using ML mod-

els, whereas the indirect approach focuses on tracking 

immune cell behavior and morphological changes over 

time to infer infection presence [46]. 

Among the direct methods, Shankarnarayan et al. 

[14], Bettauer et al. [47], Jamka et al. [48], and 

Zawadzki et al. [37] applied CNNs to stained micro-

scopic images of C. albicans. Shankarnarayan et al. [14] 

evaluated several CNN architectures and found that data 

augmentation significantly enhanced model perfor-

mance. Their results revealed that data augmentation 

significantly improved model generalization and per-

formance. Specifically, the custom CNN model, when 



Shoorgashti R, et al  J Dent Shiraz Univ Med Sci 

7 

This in press article needs final revision 

 This in press article needs final revision 

trained on augmented data, achieved a training accuracy 

of 85.4% and a validation accuracy of 83.9%. Neverthe-

less, this model showed a relatively low precision and 

recall, indicating room for improvement. Furthermore, 

the ResNet50 model, trained with data augmentation, 

demonstrated promising results, correctly predicting C. 

albicans raw images with 100.0% accuracy. Neverthe-

less, its performance varied across other Candida spe-

cies, with accuracy ranging from 0.5% to 18.0%. The 

InceptionV3 model, also trained with data that were 

augmented, achieved 92.4% training accuracy and 

78.7% validation accuracy. While this model accurately 

classified the majority of C. albicans images, it strug-

gled with identifying C. auris and C. haemulonii. Nota-

bly, the InceptionV3 model outperformed other CNN 

models in classifying Candida species, indicating its 

potential for clinical applications. 

Similarly, Jamka et al. [48] reported that Incep-

tionV3 excelled at recognizing C. albicans but faced 

challenges in distinguishing morphologically similar 

species such as C. glabrata and C. haemulonii. Interest-

ingly, the model's ability to predict different Candida 

species varied based on the type of image dataset used. 

For instance, the model achieved higher accuracy in 

identifying budding cells compared to single cells, sug-

gesting that morphological features play a crucial role in 

classification. Moreover, the study highlighted the im-

portance of dataset size and composition in ML model 

performance, with InceptionV3 demonstrating superior 

performance compared to other models [48]. 

Zawadzki et al. [37] corroborated these findings, 

emphasizing the efficacy of the InceptionV3 model in 

accurately classifying Candida species from microscop-

ic images. They noted that while other CNN models, 

such as VGG16 and EfficientNetB0, yielded lower ac-

curacies, InceptionV3 consistently outperformed them. 

The study underscored the challenges posed by morpho-

logical similarities among Candida species, necessitat-

ing further exploration of image features to improve 

classification accuracy [37].  

In another study conducted by Bettauer et al. [47], 

Candescence, a deep learning-based tool designed for 

recognizing different morphologies of C. albicans from 

microscopy images was presented. Utilizing an FCOS 

trained with transfer learning, Candescence identifies 

and classifies nine C. albicans morphologies, including 

yeast white, opaque, shmoo, and hyphae. The system 

underwent iterative refinement, including a structured 

learning approach and a grid search for optimal hy-

perparameters. Despite challenges like overlapping ob-

jects and subtle morphological differences, Candescence 

achieved high accuracy in object detection and classifi-

cation (an F1 score of approximately 73.7% with a re-

call of 82.4% and a precision of 66.5%). That highlight-

ed the potential of this DL model in the identification of 

Candida species. 

The indirect approach of detecting C. albicans tech-

nique was utilized in two studies [46, 49]. Sarkar et al. 

[46] and Belyaev et al. [49] tracked the movement and 

shape dynamics of neutrophils over time to identify the 

presence of candida species. Sarkar et al. [46] found 

that by analyzing individual microscopy frames, the 

CNN model was able to achieve 100% accuracy in iden-

tifying blood samples that were pathogen-free and dis-

tinguishing between C. albicans and C. glabrata.  

Moreover, according to Belyaev et al. [49], they 

were able to achieve test accuracies of over 75% in dis-

tinguishing between C. albicans and C. glabrata infec-

tion scenarios, and perfect accuracy in identifying path-

ogen-free samples by using an ML-supported approach 

to time-lapse microscopy data. 

Based on the studies conducted, both direct and indi-

rect techniques can be utilized to identify and categorize 

C. albicans infections accurately. However, they each 

have distinct advantages and limitations that should be 

considered when choosing an appropriate method for 

microbiological control. Analyzing the microscopic 

images of microorganisms offers advantages like visual 

confirmation of their presence and accurate identifica-

tion of microbial species based on their morphological 

characteristics. It allows researchers to evaluate the via-

bility and quantity of microorganisms’ cells present in a 

sample, which is essential for the microbiological con-

trol of cosmetic products. Moreover, direct imaging 

methods can be customized as per specific staining 

techniques, such as gram staining, to enable the simul-

taneous evaluation of multiple microbial species like 

bacteria and yeasts, in a single microscopic preparation. 

This comprehensive analysis makes microbiological 

testing more efficient and accurate, ensuring regulatory 

compliance [14, 37, 47-48].  

On the other hand, the indirect approach relies on  
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the host immune response to detect Candida's presence, 

providing several advantages. One of its key benefits is 

its potential for high-throughput screening, where auto-

mated image analysis algorithms can rapidly assess im-

mune cell behavior. This makes the indirect approach 

ideal for large-scale screening of cosmetic products, 

enabling the detection of Candida infections in various 

samples more efficiently. Additionally, this approach 

offers insights into the dynamic interactions between 

microorganisms and host immune cells, providing a 

deeper understanding of the mechanisms underlying 

fungal infections by focusing on host responses rather 

than direct pathogen detection [46, 49].  

However, both approaches have certain limitations, 

as well. Directly imaging and analyzing microorganisms 

requires specialized equipment and expertise in micros-

copy and image analysis. These methods can be expen-

sive and may not be readily available in all settings. 

Furthermore, the sample preparation and staining pro-

cedures required for direct imaging are time-consuming 

and labor-intensive, which makes it challenging to scale 

for large-scale screening. On the other hand, analyzing 

host immune responses also has its limitations. One 

notable challenge arises from the intricate interpretation 

of immune cell behavior, which exhibits considerable 

variation across individuals and can be affected by fac-

tors such as age, the overall condition of health, and 

genetic background. Due to this variability, it can be 

difficult to draw definitive conclusions about Candida 

infections based solely on immune cell phenotypes. In 

addition, analyzing time-lapse microscopy used in ana-

lyzing immune cell behavior can be challenging due to 

the time-intensive nature of the pre-processing steps 

required for video classification [14, 37, 46-49].  

Detecting microorganisms can be done through 

VOCs. VOCs refer to a diverse array of molecules typi-

cally hydrophobic and based on carbon atoms, originat-

ing from the metabolic activities of fungi and bacteria, 

encompassing both their primary and secondary meta-

bolic processes. These compounds are volatile, allowing 

them to easily disperse through the air and travel long 

distances [57]. The methods to detect VOCs include gas 

chromatography-mass spectrometry, solid phase micro-

extraction, simultaneous distillation extraction, and se-

lected ion flow tube mass spectrometry [58-62]. Anoth-

er method is the electronic nose (E-Nose), which uses 

AI to detect patterns of VOCs and categorize them. 

Similar to a biological nose, an E-Nose endeavors to 

recognize patterns within VOCs detected by its sensors. 

These sensor readings are then scrutinized and catego-

rized by an AI model [1, 58]. E-Nose is applied in vari-

ous domains, including food safety [63-65], agriculture 

[57, 66-67], and medical diagnosis [59, 61-62]. Limita-

tions such as sensor stability, standardization, and relia-

bility require refinement, and progress is being made 

through the integration of AI and ML [1]. 

In this review, one study utilized E-Nose and ML to 

detect C. albicans [1]. The results of the study conduct-

ed by Bastos et al. [1] demonstrated the effectiveness of 

the proposed approach in accurately identifying Candida 

species. The AI models, particularly Inception Time, 

achieved high accuracy rates, with most models surpas-

sing 90% accuracy in the validation and testing phases. 

Notably, Inception Time exhibited an average accuracy 

of 97.70%, underscoring its potential as a reliable model 

used for classifying volatile compounds produced by 

Candida species.  

The integration of E-Nose technology with AI algo-

rithms offers several advantages in Candida detection. 

Firstly, the use of E-Nose enables rapid and non-

invasive sample analysis, facilitating timely diagnosis. 

The portability and relatively low cost of E-Nose devic-

es further enhance their utility in various healthcare 

settings. Moreover, the study highlights the importance 

of Time Series analysis in capturing temporal patterns 

of VOC emissions, which are critical for accurate spe-

cies identification [1]. 

In general, AI-based detection of C. albicans is a 

rapidly evolving field with multiple viable approaches. 

Microscopic imaging enables high-resolution, species-

specific identification, while VOC detection offers rapid 

and scalable diagnostics. Each method has strengths and 

limitations, and the choice of technique should be in-

formed by context-specific requirements such as availa-

ble infrastructure, desired throughput, and diagnostic 

precision. 

Future work should focus on improving model gen-

eralizability, particularly in morphologically similar 

species, and exploring hybrid approaches that combine 

imaging, VOC analysis, and immune profiling. Addi-

tionally, standardizing data collection and evaluation 

protocols will be essential to facilitate clinical translati- 
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on and regulatory approval. 

It is important to contextualize these findings within 

the quality of the included studies. The risk of bias as-

sessment revealed that 57% of studies had a high risk of 

bias in patient selection, primarily due to the use of la-

boratory-controlled datasets and limited information 

regarding inclusion criteria. This presents a significant 

limitation; as such datasets may not fully reflect the 

diversity and complexity of real-world clinical scenari-

os. Consequently, the performance metrics reported- 

though promising- may be subject to overestimation and 

lack of generalizability. So, more representative sam-

pling methods, multi-center datasets, and clearer docu-

mentation of participant selection processes are recom-

mended in future studies to improve the robustness and 

applicability of AI models in real-world settings. 

 

Conclusion 

This systematic review found that AI-based methods 

demonstrate strong potential in detecting C. albicans 

infections across various modalities, including micro-

scopic imaging and VOC analysis. Both direct and indi-

rect AI approaches showed high accuracy, sensitivity, 

and specificity in the included studies. While each tech-

nique has its strengths and limitations, the overall find-

ings support the feasibility of AI-assisted diagnostic 

tools in identifying C. albicans, with further validation 

needed for clinical implementation. 
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